Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  3eltr4g GIF version

Theorem 3eltr4g 2139
 Description: Substitution of equal classes into membership relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
3eltr4g.1 (𝜑𝐴𝐵)
3eltr4g.2 𝐶 = 𝐴
3eltr4g.3 𝐷 = 𝐵
Assertion
Ref Expression
3eltr4g (𝜑𝐶𝐷)

Proof of Theorem 3eltr4g
StepHypRef Expression
1 3eltr4g.1 . 2 (𝜑𝐴𝐵)
2 3eltr4g.2 . . 3 𝐶 = 𝐴
3 3eltr4g.3 . . 3 𝐷 = 𝐵
42, 3eleq12i 2121 . 2 (𝐶𝐷𝐴𝐵)
51, 4sylibr 141 1 (𝜑𝐶𝐷)
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1259   ∈ wcel 1409 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-4 1416  ax-17 1435  ax-ial 1443  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-cleq 2049  df-clel 2052 This theorem is referenced by:  riotacl2  5509
 Copyright terms: Public domain W3C validator