ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3impdir GIF version

Theorem 3impdir 1226
Description: Importation inference (undistribute conjunction). (Contributed by NM, 20-Aug-1995.)
Hypothesis
Ref Expression
3impdir.1 (((𝜑𝜓) ∧ (𝜒𝜓)) → 𝜃)
Assertion
Ref Expression
3impdir ((𝜑𝜒𝜓) → 𝜃)

Proof of Theorem 3impdir
StepHypRef Expression
1 3impdir.1 . . 3 (((𝜑𝜓) ∧ (𝜒𝜓)) → 𝜃)
21anandirs 558 . 2 (((𝜑𝜒) ∧ 𝜓) → 𝜃)
323impa 1134 1 ((𝜑𝜒𝜓) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 920
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem depends on definitions:  df-bi 115  df-3an 922
This theorem is referenced by:  nnanq0  6710  divcanap7  7876
  Copyright terms: Public domain W3C validator