ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3ioran GIF version

Theorem 3ioran 935
Description: Negated triple disjunction as triple conjunction. (Contributed by Scott Fenton, 19-Apr-2011.)
Assertion
Ref Expression
3ioran (¬ (𝜑𝜓𝜒) ↔ (¬ 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜒))

Proof of Theorem 3ioran
StepHypRef Expression
1 ioran 702 . . 3 (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓))
21anbi1i 446 . 2 ((¬ (𝜑𝜓) ∧ ¬ 𝜒) ↔ ((¬ 𝜑 ∧ ¬ 𝜓) ∧ ¬ 𝜒))
3 ioran 702 . . 3 (¬ ((𝜑𝜓) ∨ 𝜒) ↔ (¬ (𝜑𝜓) ∧ ¬ 𝜒))
4 df-3or 921 . . 3 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∨ 𝜒))
53, 4xchnxbir 639 . 2 (¬ (𝜑𝜓𝜒) ↔ (¬ (𝜑𝜓) ∧ ¬ 𝜒))
6 df-3an 922 . 2 ((¬ 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜒) ↔ ((¬ 𝜑 ∧ ¬ 𝜓) ∧ ¬ 𝜒))
72, 5, 63bitr4i 210 1 (¬ (𝜑𝜓𝜒) ↔ (¬ 𝜑 ∧ ¬ 𝜓 ∧ ¬ 𝜒))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wa 102  wb 103  wo 662  w3o 919  w3a 920
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922
This theorem is referenced by:  ne3anior  2334
  Copyright terms: Public domain W3C validator