ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3jao GIF version

Theorem 3jao 1233
Description: Disjunction of 3 antecedents. (Contributed by NM, 8-Apr-1994.)
Assertion
Ref Expression
3jao (((𝜑𝜓) ∧ (𝜒𝜓) ∧ (𝜃𝜓)) → ((𝜑𝜒𝜃) → 𝜓))

Proof of Theorem 3jao
StepHypRef Expression
1 df-3or 921 . 2 ((𝜑𝜒𝜃) ↔ ((𝜑𝜒) ∨ 𝜃))
2 jao 705 . . . 4 ((𝜑𝜓) → ((𝜒𝜓) → ((𝜑𝜒) → 𝜓)))
3 jao 705 . . . 4 (((𝜑𝜒) → 𝜓) → ((𝜃𝜓) → (((𝜑𝜒) ∨ 𝜃) → 𝜓)))
42, 3syl6 33 . . 3 ((𝜑𝜓) → ((𝜒𝜓) → ((𝜃𝜓) → (((𝜑𝜒) ∨ 𝜃) → 𝜓))))
543imp 1133 . 2 (((𝜑𝜓) ∧ (𝜒𝜓) ∧ (𝜃𝜓)) → (((𝜑𝜒) ∨ 𝜃) → 𝜓))
61, 5syl5bi 150 1 (((𝜑𝜓) ∧ (𝜒𝜓) ∧ (𝜃𝜓)) → ((𝜑𝜒𝜃) → 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 662  w3o 919  w3a 920
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922
This theorem is referenced by:  3jaob  1234  3jaoi  1235  3jaod  1236
  Copyright terms: Public domain W3C validator