ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3jcad GIF version

Theorem 3jcad 1120
Description: Deduction conjoining the consequents of three implications. (Contributed by NM, 25-Sep-2005.)
Hypotheses
Ref Expression
3jcad.1 (𝜑 → (𝜓𝜒))
3jcad.2 (𝜑 → (𝜓𝜃))
3jcad.3 (𝜑 → (𝜓𝜏))
Assertion
Ref Expression
3jcad (𝜑 → (𝜓 → (𝜒𝜃𝜏)))

Proof of Theorem 3jcad
StepHypRef Expression
1 3jcad.1 . . . 4 (𝜑 → (𝜓𝜒))
21imp 122 . . 3 ((𝜑𝜓) → 𝜒)
3 3jcad.2 . . . 4 (𝜑 → (𝜓𝜃))
43imp 122 . . 3 ((𝜑𝜓) → 𝜃)
5 3jcad.3 . . . 4 (𝜑 → (𝜓𝜏))
65imp 122 . . 3 ((𝜑𝜓) → 𝜏)
72, 4, 63jca 1119 . 2 ((𝜑𝜓) → (𝜒𝜃𝜏))
87ex 113 1 (𝜑 → (𝜓 → (𝜒𝜃𝜏)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 920
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem depends on definitions:  df-bi 115  df-3an 922
This theorem is referenced by:  ixxssixx  9053  iccid  9076  fzen  9190
  Copyright terms: Public domain W3C validator