![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3netr4d | GIF version |
Description: Substitution of equality into both sides of an inequality. (Contributed by NM, 24-Jul-2012.) |
Ref | Expression |
---|---|
3netr4d.1 | ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
3netr4d.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
3netr4d.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
Ref | Expression |
---|---|
3netr4d | ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3netr4d.1 | . 2 ⊢ (𝜑 → 𝐴 ≠ 𝐵) | |
2 | 3netr4d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐴) | |
3 | 3netr4d.3 | . . 3 ⊢ (𝜑 → 𝐷 = 𝐵) | |
4 | 2, 3 | neeq12d 2269 | . 2 ⊢ (𝜑 → (𝐶 ≠ 𝐷 ↔ 𝐴 ≠ 𝐵)) |
5 | 1, 4 | mpbird 165 | 1 ⊢ (𝜑 → 𝐶 ≠ 𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1285 ≠ wne 2249 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-5 1377 ax-gen 1379 ax-4 1441 ax-17 1460 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-cleq 2076 df-ne 2250 |
This theorem is referenced by: modsumfzodifsn 9530 |
Copyright terms: Public domain | W3C validator |