![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3p3e6 | GIF version |
Description: 3 + 3 = 6. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
3p3e6 | ⊢ (3 + 3) = 6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 8166 | . . . 4 ⊢ 3 = (2 + 1) | |
2 | 1 | oveq2i 5554 | . . 3 ⊢ (3 + 3) = (3 + (2 + 1)) |
3 | 3cn 8181 | . . . 4 ⊢ 3 ∈ ℂ | |
4 | 2cn 8177 | . . . 4 ⊢ 2 ∈ ℂ | |
5 | ax-1cn 7131 | . . . 4 ⊢ 1 ∈ ℂ | |
6 | 3, 4, 5 | addassi 7189 | . . 3 ⊢ ((3 + 2) + 1) = (3 + (2 + 1)) |
7 | 2, 6 | eqtr4i 2105 | . 2 ⊢ (3 + 3) = ((3 + 2) + 1) |
8 | df-6 8169 | . . 3 ⊢ 6 = (5 + 1) | |
9 | 3p2e5 8240 | . . . 4 ⊢ (3 + 2) = 5 | |
10 | 9 | oveq1i 5553 | . . 3 ⊢ ((3 + 2) + 1) = (5 + 1) |
11 | 8, 10 | eqtr4i 2105 | . 2 ⊢ 6 = ((3 + 2) + 1) |
12 | 7, 11 | eqtr4i 2105 | 1 ⊢ (3 + 3) = 6 |
Colors of variables: wff set class |
Syntax hints: = wceq 1285 (class class class)co 5543 1c1 7044 + caddc 7046 2c2 8156 3c3 8157 5c5 8159 6c6 8160 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-resscn 7130 ax-1cn 7131 ax-1re 7132 ax-addrcl 7135 ax-addass 7140 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-rex 2355 df-v 2604 df-un 2978 df-in 2980 df-ss 2987 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-br 3794 df-iota 4897 df-fv 4940 df-ov 5546 df-2 8165 df-3 8166 df-4 8167 df-5 8168 df-6 8169 |
This theorem is referenced by: 3t2e6 8255 ex-dvds 10745 ex-gcd 10746 |
Copyright terms: Public domain | W3C validator |