ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3t2e6 GIF version

Theorem 3t2e6 8255
Description: 3 times 2 equals 6. (Contributed by NM, 2-Aug-2004.)
Assertion
Ref Expression
3t2e6 (3 · 2) = 6

Proof of Theorem 3t2e6
StepHypRef Expression
1 3cn 8181 . . 3 3 ∈ ℂ
21times2i 8230 . 2 (3 · 2) = (3 + 3)
3 3p3e6 8241 . 2 (3 + 3) = 6
42, 3eqtri 2102 1 (3 · 2) = 6
Colors of variables: wff set class
Syntax hints:   = wceq 1285  (class class class)co 5543   + caddc 7046   · cmul 7048  2c2 8156  3c3 8157  6c6 8160
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-mulcom 7139  ax-addass 7140  ax-mulass 7141  ax-distr 7142  ax-1rid 7145  ax-cnre 7149
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-iota 4897  df-fv 4940  df-ov 5546  df-2 8165  df-3 8166  df-4 8167  df-5 8168  df-6 8169
This theorem is referenced by:  3t3e9  8256  8th4div3  8317  halfpm6th  8318  fac3  9756  3lcm2e6woprm  10612  3lcm2e6  10683
  Copyright terms: Public domain W3C validator