ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4exdistr GIF version

Theorem 4exdistr 1809
Description: Distribution of existential quantifiers. (Contributed by NM, 9-Mar-1995.)
Assertion
Ref Expression
4exdistr (∃𝑥𝑦𝑧𝑤((𝜑𝜓) ∧ (𝜒𝜃)) ↔ ∃𝑥(𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧(𝜒 ∧ ∃𝑤𝜃))))
Distinct variable groups:   𝜑,𝑦   𝜑,𝑧   𝜑,𝑤   𝜓,𝑧   𝜓,𝑤   𝜒,𝑤
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦,𝑧)   𝜃(𝑥,𝑦,𝑧,𝑤)

Proof of Theorem 4exdistr
StepHypRef Expression
1 anass 387 . . . . . . . 8 (((𝜑𝜓) ∧ (𝜒𝜃)) ↔ (𝜑 ∧ (𝜓 ∧ (𝜒𝜃))))
21exbii 1512 . . . . . . 7 (∃𝑤((𝜑𝜓) ∧ (𝜒𝜃)) ↔ ∃𝑤(𝜑 ∧ (𝜓 ∧ (𝜒𝜃))))
3 19.42v 1802 . . . . . . . 8 (∃𝑤(𝜑 ∧ (𝜓 ∧ (𝜒𝜃))) ↔ (𝜑 ∧ ∃𝑤(𝜓 ∧ (𝜒𝜃))))
4 19.42v 1802 . . . . . . . . 9 (∃𝑤(𝜓 ∧ (𝜒𝜃)) ↔ (𝜓 ∧ ∃𝑤(𝜒𝜃)))
54anbi2i 438 . . . . . . . 8 ((𝜑 ∧ ∃𝑤(𝜓 ∧ (𝜒𝜃))) ↔ (𝜑 ∧ (𝜓 ∧ ∃𝑤(𝜒𝜃))))
6 19.42v 1802 . . . . . . . . . 10 (∃𝑤(𝜒𝜃) ↔ (𝜒 ∧ ∃𝑤𝜃))
76anbi2i 438 . . . . . . . . 9 ((𝜓 ∧ ∃𝑤(𝜒𝜃)) ↔ (𝜓 ∧ (𝜒 ∧ ∃𝑤𝜃)))
87anbi2i 438 . . . . . . . 8 ((𝜑 ∧ (𝜓 ∧ ∃𝑤(𝜒𝜃))) ↔ (𝜑 ∧ (𝜓 ∧ (𝜒 ∧ ∃𝑤𝜃))))
93, 5, 83bitri 199 . . . . . . 7 (∃𝑤(𝜑 ∧ (𝜓 ∧ (𝜒𝜃))) ↔ (𝜑 ∧ (𝜓 ∧ (𝜒 ∧ ∃𝑤𝜃))))
102, 9bitri 177 . . . . . 6 (∃𝑤((𝜑𝜓) ∧ (𝜒𝜃)) ↔ (𝜑 ∧ (𝜓 ∧ (𝜒 ∧ ∃𝑤𝜃))))
1110exbii 1512 . . . . 5 (∃𝑧𝑤((𝜑𝜓) ∧ (𝜒𝜃)) ↔ ∃𝑧(𝜑 ∧ (𝜓 ∧ (𝜒 ∧ ∃𝑤𝜃))))
12 19.42v 1802 . . . . 5 (∃𝑧(𝜑 ∧ (𝜓 ∧ (𝜒 ∧ ∃𝑤𝜃))) ↔ (𝜑 ∧ ∃𝑧(𝜓 ∧ (𝜒 ∧ ∃𝑤𝜃))))
13 19.42v 1802 . . . . . 6 (∃𝑧(𝜓 ∧ (𝜒 ∧ ∃𝑤𝜃)) ↔ (𝜓 ∧ ∃𝑧(𝜒 ∧ ∃𝑤𝜃)))
1413anbi2i 438 . . . . 5 ((𝜑 ∧ ∃𝑧(𝜓 ∧ (𝜒 ∧ ∃𝑤𝜃))) ↔ (𝜑 ∧ (𝜓 ∧ ∃𝑧(𝜒 ∧ ∃𝑤𝜃))))
1511, 12, 143bitri 199 . . . 4 (∃𝑧𝑤((𝜑𝜓) ∧ (𝜒𝜃)) ↔ (𝜑 ∧ (𝜓 ∧ ∃𝑧(𝜒 ∧ ∃𝑤𝜃))))
1615exbii 1512 . . 3 (∃𝑦𝑧𝑤((𝜑𝜓) ∧ (𝜒𝜃)) ↔ ∃𝑦(𝜑 ∧ (𝜓 ∧ ∃𝑧(𝜒 ∧ ∃𝑤𝜃))))
17 19.42v 1802 . . 3 (∃𝑦(𝜑 ∧ (𝜓 ∧ ∃𝑧(𝜒 ∧ ∃𝑤𝜃))) ↔ (𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧(𝜒 ∧ ∃𝑤𝜃))))
1816, 17bitri 177 . 2 (∃𝑦𝑧𝑤((𝜑𝜓) ∧ (𝜒𝜃)) ↔ (𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧(𝜒 ∧ ∃𝑤𝜃))))
1918exbii 1512 1 (∃𝑥𝑦𝑧𝑤((𝜑𝜓) ∧ (𝜒𝜃)) ↔ ∃𝑥(𝜑 ∧ ∃𝑦(𝜓 ∧ ∃𝑧(𝜒 ∧ ∃𝑤𝜃))))
Colors of variables: wff set class
Syntax hints:  wa 101  wb 102  wex 1397
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-4 1416  ax-17 1435  ax-ial 1443
This theorem depends on definitions:  df-bi 114
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator