![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 4onn | GIF version |
Description: The ordinal 4 is a natural number. (Contributed by Mario Carneiro, 5-Jan-2016.) |
Ref | Expression |
---|---|
4onn | ⊢ 4𝑜 ∈ ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-4o 6068 | . 2 ⊢ 4𝑜 = suc 3𝑜 | |
2 | 3onn 6161 | . . 3 ⊢ 3𝑜 ∈ ω | |
3 | peano2 4344 | . . 3 ⊢ (3𝑜 ∈ ω → suc 3𝑜 ∈ ω) | |
4 | 2, 3 | ax-mp 7 | . 2 ⊢ suc 3𝑜 ∈ ω |
5 | 1, 4 | eqeltri 2152 | 1 ⊢ 4𝑜 ∈ ω |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1434 suc csuc 4128 ωcom 4339 3𝑜c3o 6060 4𝑜c4o 6061 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3904 ax-nul 3912 ax-pow 3956 ax-pr 3972 ax-un 4196 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-rex 2355 df-v 2604 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-nul 3259 df-pw 3392 df-sn 3412 df-pr 3413 df-uni 3610 df-int 3645 df-suc 4134 df-iom 4340 df-1o 6065 df-2o 6066 df-3o 6067 df-4o 6068 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |