Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  6cn GIF version

Theorem 6cn 8258
 Description: The number 6 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
6cn 6 ∈ ℂ

Proof of Theorem 6cn
StepHypRef Expression
1 6re 8257 . 2 6 ∈ ℝ
21recni 7263 1 6 ∈ ℂ
 Colors of variables: wff set class Syntax hints:   ∈ wcel 1434  ℂcc 7111  6c6 8230 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-11 1438  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-resscn 7200  ax-1re 7202  ax-addrcl 7205 This theorem depends on definitions:  df-bi 115  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-in 2988  df-ss 2995  df-2 8235  df-3 8236  df-4 8237  df-5 8238  df-6 8239 This theorem is referenced by:  6p2e8  8318  6p3e9  8319  halfpm6th  8388  6p4e10  8699  6t2e12  8731  6t3e18  8732  6t5e30  8734  3lcm2e6woprm  10693  6lcm4e12  10694  ex-bc  10844  ex-gcd  10846
 Copyright terms: Public domain W3C validator