![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 6lt9 | GIF version |
Description: 6 is less than 9. (Contributed by Mario Carneiro, 9-Mar-2015.) |
Ref | Expression |
---|---|
6lt9 | ⊢ 6 < 9 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6lt7 8335 | . 2 ⊢ 6 < 7 | |
2 | 7lt9 8349 | . 2 ⊢ 7 < 9 | |
3 | 6re 8239 | . . 3 ⊢ 6 ∈ ℝ | |
4 | 7re 8241 | . . 3 ⊢ 7 ∈ ℝ | |
5 | 9re 8245 | . . 3 ⊢ 9 ∈ ℝ | |
6 | 3, 4, 5 | lttri 7334 | . 2 ⊢ ((6 < 7 ∧ 7 < 9) → 6 < 9) |
7 | 1, 2, 6 | mp2an 417 | 1 ⊢ 6 < 9 |
Colors of variables: wff set class |
Syntax hints: class class class wbr 3805 < clt 7267 6c6 8212 7c7 8213 9c9 8215 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3916 ax-pow 3968 ax-pr 3992 ax-un 4216 ax-setind 4308 ax-cnex 7181 ax-resscn 7182 ax-1cn 7183 ax-1re 7184 ax-icn 7185 ax-addcl 7186 ax-addrcl 7187 ax-mulcl 7188 ax-addcom 7190 ax-addass 7192 ax-i2m1 7195 ax-0lt1 7196 ax-0id 7198 ax-rnegex 7199 ax-pre-lttrn 7204 ax-pre-ltadd 7206 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-rab 2362 df-v 2612 df-dif 2984 df-un 2986 df-in 2988 df-ss 2995 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-br 3806 df-opab 3860 df-xp 4397 df-iota 4917 df-fv 4960 df-ov 5566 df-pnf 7269 df-mnf 7270 df-ltxr 7272 df-2 8217 df-3 8218 df-4 8219 df-5 8220 df-6 8221 df-7 8222 df-8 8223 df-9 8224 |
This theorem is referenced by: 5lt9 8351 |
Copyright terms: Public domain | W3C validator |