ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  8p5e13 GIF version

Theorem 8p5e13 8479
Description: 8 + 5 = 13. (Contributed by Mario Carneiro, 19-Apr-2015.)
Assertion
Ref Expression
8p5e13 (8 + 5) = 13

Proof of Theorem 8p5e13
StepHypRef Expression
1 8nn0 8232 . 2 8 ∈ ℕ0
2 4nn0 8228 . 2 4 ∈ ℕ0
3 2nn0 8226 . 2 2 ∈ ℕ0
4 df-5 8022 . 2 5 = (4 + 1)
5 df-3 8020 . 2 3 = (2 + 1)
6 8p4e12 8478 . 2 (8 + 4) = 12
71, 2, 3, 4, 5, 66p5lem 8466 1 (8 + 5) = 13
Colors of variables: wff set class
Syntax hints:   = wceq 1257  (class class class)co 5537  1c1 6918   + caddc 6920  2c2 8010  3c3 8011  4c4 8012  5c5 8013  8c8 8016  cdc 8397
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 552  ax-in2 553  ax-io 638  ax-5 1350  ax-7 1351  ax-gen 1352  ax-ie1 1396  ax-ie2 1397  ax-8 1409  ax-10 1410  ax-11 1411  ax-i12 1412  ax-bndl 1413  ax-4 1414  ax-14 1419  ax-17 1433  ax-i9 1437  ax-ial 1441  ax-i5r 1442  ax-ext 2036  ax-sep 3900  ax-pow 3952  ax-pr 3969  ax-setind 4287  ax-cnex 7003  ax-resscn 7004  ax-1cn 7005  ax-1re 7006  ax-icn 7007  ax-addcl 7008  ax-addrcl 7009  ax-mulcl 7010  ax-addcom 7012  ax-mulcom 7013  ax-addass 7014  ax-mulass 7015  ax-distr 7016  ax-i2m1 7017  ax-1rid 7019  ax-0id 7020  ax-rnegex 7021  ax-cnre 7023
This theorem depends on definitions:  df-bi 114  df-3an 896  df-tru 1260  df-fal 1263  df-nf 1364  df-sb 1660  df-eu 1917  df-mo 1918  df-clab 2041  df-cleq 2047  df-clel 2050  df-nfc 2181  df-ne 2219  df-ral 2326  df-rex 2327  df-reu 2328  df-rab 2330  df-v 2574  df-sbc 2785  df-dif 2945  df-un 2947  df-in 2949  df-ss 2956  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3606  df-int 3641  df-br 3790  df-opab 3844  df-id 4055  df-xp 4376  df-rel 4377  df-cnv 4378  df-co 4379  df-dm 4380  df-iota 4892  df-fun 4929  df-fv 4935  df-riota 5493  df-ov 5540  df-oprab 5541  df-mpt2 5542  df-sub 7217  df-inn 7961  df-2 8019  df-3 8020  df-4 8021  df-5 8022  df-6 8023  df-7 8024  df-8 8025  df-9 8026  df-n0 8210  df-dec 8398
This theorem is referenced by:  8p6e14  8480
  Copyright terms: Public domain W3C validator