ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abn0r GIF version

Theorem abn0r 3270
Description: Nonempty class abstraction. (Contributed by Jim Kingdon, 1-Aug-2018.)
Assertion
Ref Expression
abn0r (∃𝑥𝜑 → {𝑥𝜑} ≠ ∅)

Proof of Theorem abn0r
StepHypRef Expression
1 abid 2044 . . 3 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
21exbii 1512 . 2 (∃𝑥 𝑥 ∈ {𝑥𝜑} ↔ ∃𝑥𝜑)
3 nfab1 2196 . . 3 𝑥{𝑥𝜑}
43n0rf 3260 . 2 (∃𝑥 𝑥 ∈ {𝑥𝜑} → {𝑥𝜑} ≠ ∅)
52, 4sylbir 129 1 (∃𝑥𝜑 → {𝑥𝜑} ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1397  wcel 1409  {cab 2042  wne 2220  c0 3251
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-v 2576  df-dif 2947  df-nul 3252
This theorem is referenced by:  rabn0r  3271
  Copyright terms: Public domain W3C validator