Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  absexpzap GIF version

Theorem absexpzap 10192
 Description: Absolute value of integer exponentiation. (Contributed by Jim Kingdon, 11-Aug-2021.)
Assertion
Ref Expression
absexpzap ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁))

Proof of Theorem absexpzap
StepHypRef Expression
1 elznn0nn 8523 . 2 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
2 absexp 10191 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁))
32ex 113 . . . . 5 (𝐴 ∈ ℂ → (𝑁 ∈ ℕ0 → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁)))
43adantr 270 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝑁 ∈ ℕ0 → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁)))
5 1cnd 7274 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 1 ∈ ℂ)
6 simpll 496 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐴 ∈ ℂ)
7 nnnn0 8439 . . . . . . . . . 10 (-𝑁 ∈ ℕ → -𝑁 ∈ ℕ0)
87ad2antll 475 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℕ0)
96, 8expcld 9779 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑-𝑁) ∈ ℂ)
10 simplr 497 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐴 # 0)
11 nnz 8528 . . . . . . . . . 10 (-𝑁 ∈ ℕ → -𝑁 ∈ ℤ)
1211ad2antll 475 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℤ)
136, 10, 12expap0d 9785 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑-𝑁) # 0)
14 absdivap 10182 . . . . . . . 8 ((1 ∈ ℂ ∧ (𝐴↑-𝑁) ∈ ℂ ∧ (𝐴↑-𝑁) # 0) → (abs‘(1 / (𝐴↑-𝑁))) = ((abs‘1) / (abs‘(𝐴↑-𝑁))))
155, 9, 13, 14syl3anc 1170 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (abs‘(1 / (𝐴↑-𝑁))) = ((abs‘1) / (abs‘(𝐴↑-𝑁))))
16 abs1 10184 . . . . . . . . 9 (abs‘1) = 1
1716oveq1i 5575 . . . . . . . 8 ((abs‘1) / (abs‘(𝐴↑-𝑁))) = (1 / (abs‘(𝐴↑-𝑁)))
18 absexp 10191 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (abs‘(𝐴↑-𝑁)) = ((abs‘𝐴)↑-𝑁))
196, 8, 18syl2anc 403 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (abs‘(𝐴↑-𝑁)) = ((abs‘𝐴)↑-𝑁))
2019oveq2d 5581 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 / (abs‘(𝐴↑-𝑁))) = (1 / ((abs‘𝐴)↑-𝑁)))
2117, 20syl5eq 2127 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((abs‘1) / (abs‘(𝐴↑-𝑁))) = (1 / ((abs‘𝐴)↑-𝑁)))
2215, 21eqtrd 2115 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (abs‘(1 / (𝐴↑-𝑁))) = (1 / ((abs‘𝐴)↑-𝑁)))
23 simprl 498 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℝ)
2423recnd 7286 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℂ)
25 expineg2 9659 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0)) → (𝐴𝑁) = (1 / (𝐴↑-𝑁)))
266, 10, 24, 8, 25syl22anc 1171 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴𝑁) = (1 / (𝐴↑-𝑁)))
2726fveq2d 5235 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (abs‘(𝐴𝑁)) = (abs‘(1 / (𝐴↑-𝑁))))
28 abscl 10163 . . . . . . . . 9 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
2928ad2antrr 472 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (abs‘𝐴) ∈ ℝ)
3029recnd 7286 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (abs‘𝐴) ∈ ℂ)
31 abs00ap 10174 . . . . . . . . 9 (𝐴 ∈ ℂ → ((abs‘𝐴) # 0 ↔ 𝐴 # 0))
3231ad2antrr 472 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((abs‘𝐴) # 0 ↔ 𝐴 # 0))
3310, 32mpbird 165 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (abs‘𝐴) # 0)
34 expineg2 9659 . . . . . . 7 ((((abs‘𝐴) ∈ ℂ ∧ (abs‘𝐴) # 0) ∧ (𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0)) → ((abs‘𝐴)↑𝑁) = (1 / ((abs‘𝐴)↑-𝑁)))
3530, 33, 24, 8, 34syl22anc 1171 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((abs‘𝐴)↑𝑁) = (1 / ((abs‘𝐴)↑-𝑁)))
3622, 27, 353eqtr4d 2125 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁))
3736ex 113 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁)))
384, 37jaod 670 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ((𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁)))
39383impia 1136 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ))) → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁))
401, 39syl3an3b 1208 1 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (abs‘(𝐴𝑁)) = ((abs‘𝐴)↑𝑁))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 102   ↔ wb 103   ∨ wo 662   ∧ w3a 920   = wceq 1285   ∈ wcel 1434   class class class wbr 3806  ‘cfv 4953  (class class class)co 5565  ℂcc 7118  ℝcr 7119  0cc0 7120  1c1 7121  -cneg 7424   # cap 7825   / cdiv 7904  ℕcn 8183  ℕ0cn0 8432  ℤcz 8509  ↑cexp 9649  abscabs 10109 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3914  ax-sep 3917  ax-nul 3925  ax-pow 3969  ax-pr 3993  ax-un 4217  ax-setind 4309  ax-iinf 4358  ax-cnex 7206  ax-resscn 7207  ax-1cn 7208  ax-1re 7209  ax-icn 7210  ax-addcl 7211  ax-addrcl 7212  ax-mulcl 7213  ax-mulrcl 7214  ax-addcom 7215  ax-mulcom 7216  ax-addass 7217  ax-mulass 7218  ax-distr 7219  ax-i2m1 7220  ax-0lt1 7221  ax-1rid 7222  ax-0id 7223  ax-rnegex 7224  ax-precex 7225  ax-cnre 7226  ax-pre-ltirr 7227  ax-pre-ltwlin 7228  ax-pre-lttrn 7229  ax-pre-apti 7230  ax-pre-ltadd 7231  ax-pre-mulgt0 7232  ax-pre-mulext 7233  ax-arch 7234  ax-caucvg 7235 This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2613  df-sbc 2826  df-csb 2919  df-dif 2985  df-un 2987  df-in 2989  df-ss 2996  df-nul 3269  df-if 3370  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-uni 3623  df-int 3658  df-iun 3701  df-br 3807  df-opab 3861  df-mpt 3862  df-tr 3897  df-id 4077  df-po 4080  df-iso 4081  df-iord 4150  df-on 4152  df-ilim 4153  df-suc 4155  df-iom 4361  df-xp 4398  df-rel 4399  df-cnv 4400  df-co 4401  df-dm 4402  df-rn 4403  df-res 4404  df-ima 4405  df-iota 4918  df-fun 4955  df-fn 4956  df-f 4957  df-f1 4958  df-fo 4959  df-f1o 4960  df-fv 4961  df-riota 5521  df-ov 5568  df-oprab 5569  df-mpt2 5570  df-1st 5820  df-2nd 5821  df-recs 5976  df-frec 6062  df-pnf 7294  df-mnf 7295  df-xr 7296  df-ltxr 7297  df-le 7298  df-sub 7425  df-neg 7426  df-reap 7819  df-ap 7826  df-div 7905  df-inn 8184  df-2 8242  df-3 8243  df-4 8244  df-n0 8433  df-z 8510  df-uz 8778  df-rp 8893  df-iseq 9599  df-iexp 9650  df-cj 9955  df-re 9956  df-im 9957  df-rsqrt 10110  df-abs 10111 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator