![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > absimle | GIF version |
Description: The absolute value of a complex number is greater than or equal to the absolute value of its imaginary part. (Contributed by NM, 17-Mar-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.) |
Ref | Expression |
---|---|
absimle | ⊢ (𝐴 ∈ ℂ → (abs‘(ℑ‘𝐴)) ≤ (abs‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negicn 7365 | . . . . 5 ⊢ -i ∈ ℂ | |
2 | 1 | a1i 9 | . . . 4 ⊢ (𝐴 ∈ ℂ → -i ∈ ℂ) |
3 | id 19 | . . . 4 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
4 | 2, 3 | mulcld 7190 | . . 3 ⊢ (𝐴 ∈ ℂ → (-i · 𝐴) ∈ ℂ) |
5 | absrele 10096 | . . 3 ⊢ ((-i · 𝐴) ∈ ℂ → (abs‘(ℜ‘(-i · 𝐴))) ≤ (abs‘(-i · 𝐴))) | |
6 | 4, 5 | syl 14 | . 2 ⊢ (𝐴 ∈ ℂ → (abs‘(ℜ‘(-i · 𝐴))) ≤ (abs‘(-i · 𝐴))) |
7 | imre 9865 | . . 3 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(-i · 𝐴))) | |
8 | 7 | fveq2d 5207 | . 2 ⊢ (𝐴 ∈ ℂ → (abs‘(ℑ‘𝐴)) = (abs‘(ℜ‘(-i · 𝐴)))) |
9 | absmul 10082 | . . . 4 ⊢ ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘(-i · 𝐴)) = ((abs‘-i) · (abs‘𝐴))) | |
10 | 1, 9 | mpan 415 | . . 3 ⊢ (𝐴 ∈ ℂ → (abs‘(-i · 𝐴)) = ((abs‘-i) · (abs‘𝐴))) |
11 | ax-icn 7122 | . . . . . . 7 ⊢ i ∈ ℂ | |
12 | absneg 10063 | . . . . . . 7 ⊢ (i ∈ ℂ → (abs‘-i) = (abs‘i)) | |
13 | 11, 12 | ax-mp 7 | . . . . . 6 ⊢ (abs‘-i) = (abs‘i) |
14 | absi 10072 | . . . . . 6 ⊢ (abs‘i) = 1 | |
15 | 13, 14 | eqtri 2102 | . . . . 5 ⊢ (abs‘-i) = 1 |
16 | 15 | oveq1i 5547 | . . . 4 ⊢ ((abs‘-i) · (abs‘𝐴)) = (1 · (abs‘𝐴)) |
17 | abscl 10064 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | |
18 | 17 | recnd 7198 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℂ) |
19 | 18 | mulid2d 7188 | . . . 4 ⊢ (𝐴 ∈ ℂ → (1 · (abs‘𝐴)) = (abs‘𝐴)) |
20 | 16, 19 | syl5eq 2126 | . . 3 ⊢ (𝐴 ∈ ℂ → ((abs‘-i) · (abs‘𝐴)) = (abs‘𝐴)) |
21 | 10, 20 | eqtr2d 2115 | . 2 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) = (abs‘(-i · 𝐴))) |
22 | 6, 8, 21 | 3brtr4d 3817 | 1 ⊢ (𝐴 ∈ ℂ → (abs‘(ℑ‘𝐴)) ≤ (abs‘𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1285 ∈ wcel 1434 class class class wbr 3787 ‘cfv 4926 (class class class)co 5537 ℂcc 7030 1c1 7033 ici 7034 · cmul 7037 ≤ cle 7205 -cneg 7336 ℜcre 9854 ℑcim 9855 abscabs 10010 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-coll 3895 ax-sep 3898 ax-nul 3906 ax-pow 3950 ax-pr 3966 ax-un 4190 ax-setind 4282 ax-iinf 4331 ax-cnex 7118 ax-resscn 7119 ax-1cn 7120 ax-1re 7121 ax-icn 7122 ax-addcl 7123 ax-addrcl 7124 ax-mulcl 7125 ax-mulrcl 7126 ax-addcom 7127 ax-mulcom 7128 ax-addass 7129 ax-mulass 7130 ax-distr 7131 ax-i2m1 7132 ax-0lt1 7133 ax-1rid 7134 ax-0id 7135 ax-rnegex 7136 ax-precex 7137 ax-cnre 7138 ax-pre-ltirr 7139 ax-pre-ltwlin 7140 ax-pre-lttrn 7141 ax-pre-apti 7142 ax-pre-ltadd 7143 ax-pre-mulgt0 7144 ax-pre-mulext 7145 ax-arch 7146 ax-caucvg 7147 |
This theorem depends on definitions: df-bi 115 df-dc 777 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-nel 2341 df-ral 2354 df-rex 2355 df-reu 2356 df-rmo 2357 df-rab 2358 df-v 2604 df-sbc 2817 df-csb 2910 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-nul 3253 df-if 3354 df-pw 3386 df-sn 3406 df-pr 3407 df-op 3409 df-uni 3604 df-int 3639 df-iun 3682 df-br 3788 df-opab 3842 df-mpt 3843 df-tr 3878 df-id 4050 df-po 4053 df-iso 4054 df-iord 4123 df-on 4125 df-ilim 4126 df-suc 4128 df-iom 4334 df-xp 4371 df-rel 4372 df-cnv 4373 df-co 4374 df-dm 4375 df-rn 4376 df-res 4377 df-ima 4378 df-iota 4891 df-fun 4928 df-fn 4929 df-f 4930 df-f1 4931 df-fo 4932 df-f1o 4933 df-fv 4934 df-riota 5493 df-ov 5540 df-oprab 5541 df-mpt2 5542 df-1st 5792 df-2nd 5793 df-recs 5948 df-frec 6034 df-pnf 7206 df-mnf 7207 df-xr 7208 df-ltxr 7209 df-le 7210 df-sub 7337 df-neg 7338 df-reap 7731 df-ap 7738 df-div 7817 df-inn 8096 df-2 8154 df-3 8155 df-4 8156 df-n0 8345 df-z 8422 df-uz 8690 df-rp 8805 df-iseq 9511 df-iexp 9562 df-cj 9856 df-re 9857 df-im 9858 df-rsqrt 10011 df-abs 10012 |
This theorem is referenced by: imcn2 10283 climcvg1nlem 10313 |
Copyright terms: Public domain | W3C validator |