ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absneu GIF version

Theorem absneu 3469
Description: Restricted existential uniqueness determined by a singleton. (Contributed by NM, 29-May-2006.)
Assertion
Ref Expression
absneu ((𝐴𝑉 ∧ {𝑥𝜑} = {𝐴}) → ∃!𝑥𝜑)

Proof of Theorem absneu
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sneq 3413 . . . . 5 (𝑦 = 𝐴 → {𝑦} = {𝐴})
21eqeq2d 2067 . . . 4 (𝑦 = 𝐴 → ({𝑥𝜑} = {𝑦} ↔ {𝑥𝜑} = {𝐴}))
32spcegv 2658 . . 3 (𝐴𝑉 → ({𝑥𝜑} = {𝐴} → ∃𝑦{𝑥𝜑} = {𝑦}))
43imp 119 . 2 ((𝐴𝑉 ∧ {𝑥𝜑} = {𝐴}) → ∃𝑦{𝑥𝜑} = {𝑦})
5 euabsn2 3466 . 2 (∃!𝑥𝜑 ↔ ∃𝑦{𝑥𝜑} = {𝑦})
64, 5sylibr 141 1 ((𝐴𝑉 ∧ {𝑥𝜑} = {𝐴}) → ∃!𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101   = wceq 1259  wex 1397  wcel 1409  ∃!weu 1916  {cab 2042  {csn 3402
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-sn 3408
This theorem is referenced by:  rabsneu  3470
  Copyright terms: Public domain W3C validator