ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  abssexg GIF version

Theorem abssexg 3961
Description: Existence of a class of subsets. (Contributed by NM, 15-Jul-2006.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
abssexg (𝐴𝑉 → {𝑥 ∣ (𝑥𝐴𝜑)} ∈ V)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem abssexg
StepHypRef Expression
1 pwexg 3960 . 2 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
2 df-pw 3388 . . . 4 𝒫 𝐴 = {𝑥𝑥𝐴}
32eleq1i 2119 . . 3 (𝒫 𝐴 ∈ V ↔ {𝑥𝑥𝐴} ∈ V)
4 simpl 106 . . . . 5 ((𝑥𝐴𝜑) → 𝑥𝐴)
54ss2abi 3039 . . . 4 {𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥𝑥𝐴}
6 ssexg 3923 . . . 4 (({𝑥 ∣ (𝑥𝐴𝜑)} ⊆ {𝑥𝑥𝐴} ∧ {𝑥𝑥𝐴} ∈ V) → {𝑥 ∣ (𝑥𝐴𝜑)} ∈ V)
75, 6mpan 408 . . 3 ({𝑥𝑥𝐴} ∈ V → {𝑥 ∣ (𝑥𝐴𝜑)} ∈ V)
83, 7sylbi 118 . 2 (𝒫 𝐴 ∈ V → {𝑥 ∣ (𝑥𝐴𝜑)} ∈ V)
91, 8syl 14 1 (𝐴𝑉 → {𝑥 ∣ (𝑥𝐴𝜑)} ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wcel 1409  {cab 2042  Vcvv 2574  wss 2944  𝒫 cpw 3386
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-in 2951  df-ss 2958  df-pw 3388
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator