![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > abssubap0 | GIF version |
Description: If the absolute value of a complex number is less than a real, its difference from the real is apart from zero. (Contributed by Jim Kingdon, 12-Aug-2021.) |
Ref | Expression |
---|---|
abssubap0 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ (abs‘𝐴) < 𝐵) → (𝐵 − 𝐴) # 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr 497 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → 𝐵 ∈ ℝ) | |
2 | 1 | recnd 7198 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → 𝐵 ∈ ℂ) |
3 | simpll 496 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → 𝐴 ∈ ℂ) | |
4 | abscl 10064 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ) | |
5 | 3, 4 | syl 14 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → (abs‘𝐴) ∈ ℝ) |
6 | abscl 10064 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → (abs‘𝐵) ∈ ℝ) | |
7 | 2, 6 | syl 14 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → (abs‘𝐵) ∈ ℝ) |
8 | simpr 108 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → (abs‘𝐴) < 𝐵) | |
9 | leabs 10087 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ → 𝐵 ≤ (abs‘𝐵)) | |
10 | 1, 9 | syl 14 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → 𝐵 ≤ (abs‘𝐵)) |
11 | 5, 1, 7, 8, 10 | ltletrd 7583 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → (abs‘𝐴) < (abs‘𝐵)) |
12 | 5, 7, 11 | gtapd 7791 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → (abs‘𝐵) # (abs‘𝐴)) |
13 | absext 10076 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((abs‘𝐵) # (abs‘𝐴) → 𝐵 # 𝐴)) | |
14 | 2, 3, 13 | syl2anc 403 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → ((abs‘𝐵) # (abs‘𝐴) → 𝐵 # 𝐴)) |
15 | 12, 14 | mpd 13 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → 𝐵 # 𝐴) |
16 | 2, 3, 15 | subap0d 7796 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) < 𝐵) → (𝐵 − 𝐴) # 0) |
17 | 16 | 3impa 1134 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℝ ∧ (abs‘𝐴) < 𝐵) → (𝐵 − 𝐴) # 0) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∧ w3a 920 ∈ wcel 1434 class class class wbr 3787 ‘cfv 4926 (class class class)co 5537 ℂcc 7030 ℝcr 7031 0cc0 7032 < clt 7204 ≤ cle 7205 − cmin 7335 # cap 7737 abscabs 10010 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-coll 3895 ax-sep 3898 ax-nul 3906 ax-pow 3950 ax-pr 3966 ax-un 4190 ax-setind 4282 ax-iinf 4331 ax-cnex 7118 ax-resscn 7119 ax-1cn 7120 ax-1re 7121 ax-icn 7122 ax-addcl 7123 ax-addrcl 7124 ax-mulcl 7125 ax-mulrcl 7126 ax-addcom 7127 ax-mulcom 7128 ax-addass 7129 ax-mulass 7130 ax-distr 7131 ax-i2m1 7132 ax-0lt1 7133 ax-1rid 7134 ax-0id 7135 ax-rnegex 7136 ax-precex 7137 ax-cnre 7138 ax-pre-ltirr 7139 ax-pre-ltwlin 7140 ax-pre-lttrn 7141 ax-pre-apti 7142 ax-pre-ltadd 7143 ax-pre-mulgt0 7144 ax-pre-mulext 7145 ax-arch 7146 ax-caucvg 7147 |
This theorem depends on definitions: df-bi 115 df-dc 777 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-nel 2341 df-ral 2354 df-rex 2355 df-reu 2356 df-rmo 2357 df-rab 2358 df-v 2604 df-sbc 2817 df-csb 2910 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-nul 3253 df-if 3354 df-pw 3386 df-sn 3406 df-pr 3407 df-op 3409 df-uni 3604 df-int 3639 df-iun 3682 df-br 3788 df-opab 3842 df-mpt 3843 df-tr 3878 df-id 4050 df-po 4053 df-iso 4054 df-iord 4123 df-on 4125 df-ilim 4126 df-suc 4128 df-iom 4334 df-xp 4371 df-rel 4372 df-cnv 4373 df-co 4374 df-dm 4375 df-rn 4376 df-res 4377 df-ima 4378 df-iota 4891 df-fun 4928 df-fn 4929 df-f 4930 df-f1 4931 df-fo 4932 df-f1o 4933 df-fv 4934 df-riota 5493 df-ov 5540 df-oprab 5541 df-mpt2 5542 df-1st 5792 df-2nd 5793 df-recs 5948 df-frec 6034 df-pnf 7206 df-mnf 7207 df-xr 7208 df-ltxr 7209 df-le 7210 df-sub 7337 df-neg 7338 df-reap 7731 df-ap 7738 df-div 7817 df-inn 8096 df-2 8154 df-3 8155 df-4 8156 df-n0 8345 df-z 8422 df-uz 8690 df-rp 8805 df-iseq 9511 df-iexp 9562 df-cj 9856 df-re 9857 df-im 9858 df-rsqrt 10011 df-abs 10012 |
This theorem is referenced by: abssubne0 10104 |
Copyright terms: Public domain | W3C validator |