ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absval GIF version

Theorem absval 9791
Description: The absolute value (modulus) of a complex number. Proposition 10-3.7(a) of [Gleason] p. 133. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
absval (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴))))

Proof of Theorem absval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rsqrt 9788 . . . 4 √ = (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℝ ((𝑦↑2) = 𝑥 ∧ 0 ≤ 𝑦)))
2 reex 7043 . . . . 5 ℝ ∈ V
32mptex 5412 . . . 4 (𝑥 ∈ ℝ ↦ (𝑦 ∈ ℝ ((𝑦↑2) = 𝑥 ∧ 0 ≤ 𝑦))) ∈ V
41, 3eqeltri 2124 . . 3 √ ∈ V
5 id 19 . . . 4 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
6 cjcl 9640 . . . 4 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
75, 6mulcld 7075 . . 3 (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) ∈ ℂ)
8 fvexg 5219 . . 3 ((√ ∈ V ∧ (𝐴 · (∗‘𝐴)) ∈ ℂ) → (√‘(𝐴 · (∗‘𝐴))) ∈ V)
94, 7, 8sylancr 399 . 2 (𝐴 ∈ ℂ → (√‘(𝐴 · (∗‘𝐴))) ∈ V)
10 fveq2 5203 . . . . 5 (𝑥 = 𝐴 → (∗‘𝑥) = (∗‘𝐴))
11 oveq12 5546 . . . . 5 ((𝑥 = 𝐴 ∧ (∗‘𝑥) = (∗‘𝐴)) → (𝑥 · (∗‘𝑥)) = (𝐴 · (∗‘𝐴)))
1210, 11mpdan 406 . . . 4 (𝑥 = 𝐴 → (𝑥 · (∗‘𝑥)) = (𝐴 · (∗‘𝐴)))
1312fveq2d 5207 . . 3 (𝑥 = 𝐴 → (√‘(𝑥 · (∗‘𝑥))) = (√‘(𝐴 · (∗‘𝐴))))
14 df-abs 9789 . . 3 abs = (𝑥 ∈ ℂ ↦ (√‘(𝑥 · (∗‘𝑥))))
1513, 14fvmptg 5273 . 2 ((𝐴 ∈ ℂ ∧ (√‘(𝐴 · (∗‘𝐴))) ∈ V) → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴))))
169, 15mpdan 406 1 (𝐴 ∈ ℂ → (abs‘𝐴) = (√‘(𝐴 · (∗‘𝐴))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101   = wceq 1257  wcel 1407  Vcvv 2572   class class class wbr 3789  cmpt 3843  cfv 4927  crio 5492  (class class class)co 5537  cc 6915  cr 6916  0cc0 6917   · cmul 6922  cle 7090  2c2 8010  cexp 9384  ccj 9631  csqrt 9786  abscabs 9787
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 552  ax-in2 553  ax-io 638  ax-5 1350  ax-7 1351  ax-gen 1352  ax-ie1 1396  ax-ie2 1397  ax-8 1409  ax-10 1410  ax-11 1411  ax-i12 1412  ax-bndl 1413  ax-4 1414  ax-13 1418  ax-14 1419  ax-17 1433  ax-i9 1437  ax-ial 1441  ax-i5r 1442  ax-ext 2036  ax-coll 3897  ax-sep 3900  ax-nul 3908  ax-pow 3952  ax-pr 3969  ax-un 4195  ax-setind 4287  ax-iinf 4336  ax-cnex 7003  ax-resscn 7004  ax-1cn 7005  ax-1re 7006  ax-icn 7007  ax-addcl 7008  ax-addrcl 7009  ax-mulcl 7010  ax-mulrcl 7011  ax-addcom 7012  ax-mulcom 7013  ax-addass 7014  ax-mulass 7015  ax-distr 7016  ax-i2m1 7017  ax-1rid 7019  ax-0id 7020  ax-rnegex 7021  ax-precex 7022  ax-cnre 7023  ax-pre-ltirr 7024  ax-pre-lttrn 7026  ax-pre-apti 7027  ax-pre-ltadd 7028  ax-pre-mulgt0 7029
This theorem depends on definitions:  df-bi 114  df-dc 752  df-3or 895  df-3an 896  df-tru 1260  df-fal 1263  df-nf 1364  df-sb 1660  df-eu 1917  df-mo 1918  df-clab 2041  df-cleq 2047  df-clel 2050  df-nfc 2181  df-ne 2219  df-nel 2313  df-ral 2326  df-rex 2327  df-reu 2328  df-rmo 2329  df-rab 2330  df-v 2574  df-sbc 2785  df-csb 2878  df-dif 2945  df-un 2947  df-in 2949  df-ss 2956  df-nul 3250  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3606  df-int 3641  df-iun 3684  df-br 3790  df-opab 3844  df-mpt 3845  df-tr 3880  df-eprel 4051  df-id 4055  df-po 4058  df-iso 4059  df-iord 4128  df-on 4130  df-suc 4133  df-iom 4339  df-xp 4376  df-rel 4377  df-cnv 4378  df-co 4379  df-dm 4380  df-rn 4381  df-res 4382  df-ima 4383  df-iota 4892  df-fun 4929  df-fn 4930  df-f 4931  df-f1 4932  df-fo 4933  df-f1o 4934  df-fv 4935  df-riota 5493  df-ov 5540  df-oprab 5541  df-mpt2 5542  df-1st 5792  df-2nd 5793  df-recs 5948  df-irdg 5985  df-1o 6029  df-2o 6030  df-oadd 6033  df-omul 6034  df-er 6134  df-ec 6136  df-qs 6140  df-ni 6430  df-pli 6431  df-mi 6432  df-lti 6433  df-plpq 6470  df-mpq 6471  df-enq 6473  df-nqqs 6474  df-plqqs 6475  df-mqqs 6476  df-1nqqs 6477  df-rq 6478  df-ltnqqs 6479  df-enq0 6550  df-nq0 6551  df-0nq0 6552  df-plq0 6553  df-mq0 6554  df-inp 6592  df-i1p 6593  df-iplp 6594  df-iltp 6596  df-enr 6839  df-nr 6840  df-ltr 6843  df-0r 6844  df-1r 6845  df-0 6924  df-1 6925  df-r 6927  df-lt 6930  df-pnf 7091  df-mnf 7092  df-ltxr 7094  df-sub 7217  df-neg 7218  df-reap 7610  df-cj 9634  df-rsqrt 9788  df-abs 9789
This theorem is referenced by:  absneg  9840  abscl  9841  abscj  9842  absvalsq  9843  absval2  9847  abs0  9848  absi  9849  absge0  9850  absrpclap  9851  absmul  9859  absid  9861  absre  9867  absf  9900
  Copyright terms: Public domain W3C validator