![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > add4i | GIF version |
Description: Rearrangement of 4 terms in a sum. (Contributed by NM, 9-May-1999.) |
Ref | Expression |
---|---|
add.1 | ⊢ 𝐴 ∈ ℂ |
add.2 | ⊢ 𝐵 ∈ ℂ |
add.3 | ⊢ 𝐶 ∈ ℂ |
add4.4 | ⊢ 𝐷 ∈ ℂ |
Ref | Expression |
---|---|
add4i | ⊢ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | add.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | add.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | add.3 | . 2 ⊢ 𝐶 ∈ ℂ | |
4 | add4.4 | . 2 ⊢ 𝐷 ∈ ℂ | |
5 | add4 7336 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷))) | |
6 | 1, 2, 3, 4, 5 | mp4an 418 | 1 ⊢ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1285 ∈ wcel 1434 (class class class)co 5543 ℂcc 7041 + caddc 7046 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-addcl 7134 ax-addcom 7138 ax-addass 7140 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-rex 2355 df-v 2604 df-un 2978 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-br 3794 df-iota 4897 df-fv 4940 df-ov 5546 |
This theorem is referenced by: add42i 7341 negdii 7459 numma 8601 |
Copyright terms: Public domain | W3C validator |