![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addass | GIF version |
Description: Alias for ax-addass 7140, for naming consistency with addassi 7189. (Contributed by NM, 10-Mar-2008.) |
Ref | Expression |
---|---|
addass | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-addass 7140 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 920 = wceq 1285 ∈ wcel 1434 (class class class)co 5543 ℂcc 7041 + caddc 7046 |
This theorem was proved from axioms: ax-addass 7140 |
This theorem is referenced by: addassi 7189 addassd 7203 add12 7333 add32 7334 add32r 7335 add4 7336 nnaddcl 8126 uzaddcl 8755 fztp 9171 iseradd 9559 expadd 9615 bernneq 9690 faclbnd6 9768 resqrexlemover 10034 clim2iser 10313 clim2iser2 10314 odd2np1lem 10416 |
Copyright terms: Public domain | W3C validator |