ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addasspig GIF version

Theorem addasspig 7131
Description: Addition of positive integers is associative. (Contributed by Jim Kingdon, 26-Aug-2019.)
Assertion
Ref Expression
addasspig ((𝐴N𝐵N𝐶N) → ((𝐴 +N 𝐵) +N 𝐶) = (𝐴 +N (𝐵 +N 𝐶)))

Proof of Theorem addasspig
StepHypRef Expression
1 pinn 7110 . . 3 (𝐴N𝐴 ∈ ω)
2 pinn 7110 . . 3 (𝐵N𝐵 ∈ ω)
3 pinn 7110 . . 3 (𝐶N𝐶 ∈ ω)
4 nnaass 6374 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶)))
51, 2, 3, 4syl3an 1258 . 2 ((𝐴N𝐵N𝐶N) → ((𝐴 +o 𝐵) +o 𝐶) = (𝐴 +o (𝐵 +o 𝐶)))
6 addclpi 7128 . . . . 5 ((𝐴N𝐵N) → (𝐴 +N 𝐵) ∈ N)
7 addpiord 7117 . . . . 5 (((𝐴 +N 𝐵) ∈ N𝐶N) → ((𝐴 +N 𝐵) +N 𝐶) = ((𝐴 +N 𝐵) +o 𝐶))
86, 7sylan 281 . . . 4 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 +N 𝐵) +N 𝐶) = ((𝐴 +N 𝐵) +o 𝐶))
9 addpiord 7117 . . . . . 6 ((𝐴N𝐵N) → (𝐴 +N 𝐵) = (𝐴 +o 𝐵))
109oveq1d 5782 . . . . 5 ((𝐴N𝐵N) → ((𝐴 +N 𝐵) +o 𝐶) = ((𝐴 +o 𝐵) +o 𝐶))
1110adantr 274 . . . 4 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 +N 𝐵) +o 𝐶) = ((𝐴 +o 𝐵) +o 𝐶))
128, 11eqtrd 2170 . . 3 (((𝐴N𝐵N) ∧ 𝐶N) → ((𝐴 +N 𝐵) +N 𝐶) = ((𝐴 +o 𝐵) +o 𝐶))
13123impa 1176 . 2 ((𝐴N𝐵N𝐶N) → ((𝐴 +N 𝐵) +N 𝐶) = ((𝐴 +o 𝐵) +o 𝐶))
14 addclpi 7128 . . . . 5 ((𝐵N𝐶N) → (𝐵 +N 𝐶) ∈ N)
15 addpiord 7117 . . . . 5 ((𝐴N ∧ (𝐵 +N 𝐶) ∈ N) → (𝐴 +N (𝐵 +N 𝐶)) = (𝐴 +o (𝐵 +N 𝐶)))
1614, 15sylan2 284 . . . 4 ((𝐴N ∧ (𝐵N𝐶N)) → (𝐴 +N (𝐵 +N 𝐶)) = (𝐴 +o (𝐵 +N 𝐶)))
17 addpiord 7117 . . . . . 6 ((𝐵N𝐶N) → (𝐵 +N 𝐶) = (𝐵 +o 𝐶))
1817oveq2d 5783 . . . . 5 ((𝐵N𝐶N) → (𝐴 +o (𝐵 +N 𝐶)) = (𝐴 +o (𝐵 +o 𝐶)))
1918adantl 275 . . . 4 ((𝐴N ∧ (𝐵N𝐶N)) → (𝐴 +o (𝐵 +N 𝐶)) = (𝐴 +o (𝐵 +o 𝐶)))
2016, 19eqtrd 2170 . . 3 ((𝐴N ∧ (𝐵N𝐶N)) → (𝐴 +N (𝐵 +N 𝐶)) = (𝐴 +o (𝐵 +o 𝐶)))
21203impb 1177 . 2 ((𝐴N𝐵N𝐶N) → (𝐴 +N (𝐵 +N 𝐶)) = (𝐴 +o (𝐵 +o 𝐶)))
225, 13, 213eqtr4d 2180 1 ((𝐴N𝐵N𝐶N) → ((𝐴 +N 𝐵) +N 𝐶) = (𝐴 +N (𝐵 +N 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 962   = wceq 1331  wcel 1480  ωcom 4499  (class class class)co 5767   +o coa 6303  Ncnpi 7073   +N cpli 7074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-oadd 6310  df-ni 7105  df-pli 7106
This theorem is referenced by:  addassnqg  7183
  Copyright terms: Public domain W3C validator