ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addassprg GIF version

Theorem addassprg 6908
Description: Addition of positive reals is associative. Proposition 9-3.5(i) of [Gleason] p. 123. (Contributed by Jim Kingdon, 11-Dec-2019.)
Assertion
Ref Expression
addassprg ((𝐴P𝐵P𝐶P) → ((𝐴 +P 𝐵) +P 𝐶) = (𝐴 +P (𝐵 +P 𝐶)))

Proof of Theorem addassprg
Dummy variables 𝑓 𝑔 𝑣 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-iplp 6797 . 2 +P = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦 +Q 𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦 +Q 𝑧))}⟩)
2 addclnq 6704 . 2 ((𝑦Q𝑧Q) → (𝑦 +Q 𝑧) ∈ Q)
3 dmplp 6869 . 2 dom +P = (P × P)
4 addclpr 6866 . 2 ((𝑓P𝑔P) → (𝑓 +P 𝑔) ∈ P)
5 addassnqg 6711 . 2 ((𝑓Q𝑔QQ) → ((𝑓 +Q 𝑔) +Q ) = (𝑓 +Q (𝑔 +Q )))
61, 2, 3, 4, 5genpassg 6855 1 ((𝐴P𝐵P𝐶P) → ((𝐴 +P 𝐵) +P 𝐶) = (𝐴 +P (𝐵 +P 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 920   = wceq 1285  wcel 1434  (class class class)co 5565   +Q cplq 6611  Pcnp 6620   +P cpp 6622
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3914  ax-sep 3917  ax-nul 3925  ax-pow 3969  ax-pr 3993  ax-un 4217  ax-setind 4309  ax-iinf 4358
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2613  df-sbc 2826  df-csb 2919  df-dif 2985  df-un 2987  df-in 2989  df-ss 2996  df-nul 3269  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-uni 3623  df-int 3658  df-iun 3701  df-br 3807  df-opab 3861  df-mpt 3862  df-tr 3897  df-eprel 4073  df-id 4077  df-po 4080  df-iso 4081  df-iord 4150  df-on 4152  df-suc 4155  df-iom 4361  df-xp 4398  df-rel 4399  df-cnv 4400  df-co 4401  df-dm 4402  df-rn 4403  df-res 4404  df-ima 4405  df-iota 4918  df-fun 4955  df-fn 4956  df-f 4957  df-f1 4958  df-fo 4959  df-f1o 4960  df-fv 4961  df-ov 5568  df-oprab 5569  df-mpt2 5570  df-1st 5820  df-2nd 5821  df-recs 5976  df-irdg 6041  df-1o 6087  df-2o 6088  df-oadd 6091  df-omul 6092  df-er 6195  df-ec 6197  df-qs 6201  df-ni 6633  df-pli 6634  df-mi 6635  df-lti 6636  df-plpq 6673  df-mpq 6674  df-enq 6676  df-nqqs 6677  df-plqqs 6678  df-mqqs 6679  df-1nqqs 6680  df-rq 6681  df-ltnqqs 6682  df-enq0 6753  df-nq0 6754  df-0nq0 6755  df-plq0 6756  df-mq0 6757  df-inp 6795  df-iplp 6797
This theorem is referenced by:  ltaprlem  6947  ltaprg  6948  caucvgprlemcanl  6973  caucvgprprlemexb  7036  caucvgprprlemaddq  7037  enrer  7051  addcmpblnr  7055  mulcmpblnrlemg  7056  ltsrprg  7063  addasssrg  7072  mulasssrg  7074  distrsrg  7075  m1p1sr  7076  m1m1sr  7077  lttrsr  7078  ltsosr  7080  0idsr  7083  1idsr  7084  ltasrg  7086  recexgt0sr  7089  mulgt0sr  7093  mulextsr1lem  7095  srpospr  7098  prsradd  7101  prsrlt  7102  pitonnlem1p1  7153  pitoregt0  7156  recidpirqlemcalc  7164
  Copyright terms: Public domain W3C validator