ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcanad GIF version

Theorem addcanad 7350
Description: Cancelling a term on the left-hand side of a sum in an equality. Consequence of addcand 7348. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
addcand.1 (𝜑𝐴 ∈ ℂ)
addcand.2 (𝜑𝐵 ∈ ℂ)
addcand.3 (𝜑𝐶 ∈ ℂ)
addcanad.4 (𝜑 → (𝐴 + 𝐵) = (𝐴 + 𝐶))
Assertion
Ref Expression
addcanad (𝜑𝐵 = 𝐶)

Proof of Theorem addcanad
StepHypRef Expression
1 addcanad.4 . 2 (𝜑 → (𝐴 + 𝐵) = (𝐴 + 𝐶))
2 addcand.1 . . 3 (𝜑𝐴 ∈ ℂ)
3 addcand.2 . . 3 (𝜑𝐵 ∈ ℂ)
4 addcand.3 . . 3 (𝜑𝐶 ∈ ℂ)
52, 3, 4addcand 7348 . 2 (𝜑 → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶))
61, 5mpbid 145 1 (𝜑𝐵 = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1285  wcel 1434  (class class class)co 5537  cc 7030   + caddc 7035
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-resscn 7119  ax-1cn 7120  ax-icn 7122  ax-addcl 7123  ax-addrcl 7124  ax-mulcl 7125  ax-addcom 7127  ax-addass 7129  ax-distr 7131  ax-i2m1 7132  ax-0id 7135  ax-rnegex 7136  ax-cnre 7138
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3604  df-br 3788  df-iota 4891  df-fv 4934  df-ov 5540
This theorem is referenced by:  divalglemqt  10452
  Copyright terms: Public domain W3C validator