ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcani GIF version

Theorem addcani 7255
Description: Cancellation law for addition. Theorem I.1 of [Apostol] p. 18. (Contributed by NM, 27-Oct-1999.) (Revised by Scott Fenton, 3-Jan-2013.)
Hypotheses
Ref Expression
addcani.1 𝐴 ∈ ℂ
addcani.2 𝐵 ∈ ℂ
addcani.3 𝐶 ∈ ℂ
Assertion
Ref Expression
addcani ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶)

Proof of Theorem addcani
StepHypRef Expression
1 addcani.1 . 2 𝐴 ∈ ℂ
2 addcani.2 . 2 𝐵 ∈ ℂ
3 addcani.3 . 2 𝐶 ∈ ℂ
4 addcan 7253 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶))
51, 2, 3, 4mp3an 1243 1 ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶)
Colors of variables: wff set class
Syntax hints:  wb 102   = wceq 1259  wcel 1409  (class class class)co 5539  cc 6944   + caddc 6949
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-resscn 7033  ax-1cn 7034  ax-icn 7036  ax-addcl 7037  ax-addrcl 7038  ax-mulcl 7039  ax-addcom 7041  ax-addass 7043  ax-distr 7045  ax-i2m1 7046  ax-0id 7049  ax-rnegex 7050  ax-cnre 7052
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2949  df-in 2951  df-ss 2958  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-iota 4894  df-fv 4937  df-ov 5542
This theorem is referenced by:  negdii  7357
  Copyright terms: Public domain W3C validator