![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addcanprg | GIF version |
Description: Addition cancellation law for positive reals. Proposition 9-3.5(vi) of [Gleason] p. 123. (Contributed by Jim Kingdon, 24-Dec-2019.) |
Ref | Expression |
---|---|
addcanprg | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcanprleml 6866 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (1st ‘𝐵) ⊆ (1st ‘𝐶)) | |
2 | 3ancomb 928 | . . . . . . 7 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) ↔ (𝐴 ∈ P ∧ 𝐶 ∈ P ∧ 𝐵 ∈ P)) | |
3 | eqcom 2084 | . . . . . . 7 ⊢ ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) ↔ (𝐴 +P 𝐶) = (𝐴 +P 𝐵)) | |
4 | 2, 3 | anbi12i 448 | . . . . . 6 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ↔ ((𝐴 ∈ P ∧ 𝐶 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐴 +P 𝐶) = (𝐴 +P 𝐵))) |
5 | addcanprleml 6866 | . . . . . 6 ⊢ (((𝐴 ∈ P ∧ 𝐶 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐴 +P 𝐶) = (𝐴 +P 𝐵)) → (1st ‘𝐶) ⊆ (1st ‘𝐵)) | |
6 | 4, 5 | sylbi 119 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (1st ‘𝐶) ⊆ (1st ‘𝐵)) |
7 | 1, 6 | eqssd 3017 | . . . 4 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (1st ‘𝐵) = (1st ‘𝐶)) |
8 | addcanprlemu 6867 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (2nd ‘𝐵) ⊆ (2nd ‘𝐶)) | |
9 | addcanprlemu 6867 | . . . . . 6 ⊢ (((𝐴 ∈ P ∧ 𝐶 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐴 +P 𝐶) = (𝐴 +P 𝐵)) → (2nd ‘𝐶) ⊆ (2nd ‘𝐵)) | |
10 | 4, 9 | sylbi 119 | . . . . 5 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (2nd ‘𝐶) ⊆ (2nd ‘𝐵)) |
11 | 8, 10 | eqssd 3017 | . . . 4 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (2nd ‘𝐵) = (2nd ‘𝐶)) |
12 | 7, 11 | jca 300 | . . 3 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → ((1st ‘𝐵) = (1st ‘𝐶) ∧ (2nd ‘𝐵) = (2nd ‘𝐶))) |
13 | preqlu 6724 | . . . . 5 ⊢ ((𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐵 = 𝐶 ↔ ((1st ‘𝐵) = (1st ‘𝐶) ∧ (2nd ‘𝐵) = (2nd ‘𝐶)))) | |
14 | 13 | 3adant1 957 | . . . 4 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → (𝐵 = 𝐶 ↔ ((1st ‘𝐵) = (1st ‘𝐶) ∧ (2nd ‘𝐵) = (2nd ‘𝐶)))) |
15 | 14 | adantr 270 | . . 3 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (𝐵 = 𝐶 ↔ ((1st ‘𝐵) = (1st ‘𝐶) ∧ (2nd ‘𝐵) = (2nd ‘𝐶)))) |
16 | 12, 15 | mpbird 165 | . 2 ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → 𝐵 = 𝐶) |
17 | 16 | ex 113 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P ∧ 𝐶 ∈ P) → ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → 𝐵 = 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∧ w3a 920 = wceq 1285 ∈ wcel 1434 ⊆ wss 2974 ‘cfv 4932 (class class class)co 5543 1st c1st 5796 2nd c2nd 5797 Pcnp 6543 +P cpp 6545 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-coll 3901 ax-sep 3904 ax-nul 3912 ax-pow 3956 ax-pr 3972 ax-un 4196 ax-setind 4288 ax-iinf 4337 |
This theorem depends on definitions: df-bi 115 df-dc 777 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-ral 2354 df-rex 2355 df-reu 2356 df-rab 2358 df-v 2604 df-sbc 2817 df-csb 2910 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-nul 3259 df-pw 3392 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-int 3645 df-iun 3688 df-br 3794 df-opab 3848 df-mpt 3849 df-tr 3884 df-eprel 4052 df-id 4056 df-po 4059 df-iso 4060 df-iord 4129 df-on 4131 df-suc 4134 df-iom 4340 df-xp 4377 df-rel 4378 df-cnv 4379 df-co 4380 df-dm 4381 df-rn 4382 df-res 4383 df-ima 4384 df-iota 4897 df-fun 4934 df-fn 4935 df-f 4936 df-f1 4937 df-fo 4938 df-f1o 4939 df-fv 4940 df-ov 5546 df-oprab 5547 df-mpt2 5548 df-1st 5798 df-2nd 5799 df-recs 5954 df-irdg 6019 df-1o 6065 df-2o 6066 df-oadd 6069 df-omul 6070 df-er 6172 df-ec 6174 df-qs 6178 df-ni 6556 df-pli 6557 df-mi 6558 df-lti 6559 df-plpq 6596 df-mpq 6597 df-enq 6599 df-nqqs 6600 df-plqqs 6601 df-mqqs 6602 df-1nqqs 6603 df-rq 6604 df-ltnqqs 6605 df-enq0 6676 df-nq0 6677 df-0nq0 6678 df-plq0 6679 df-mq0 6680 df-inp 6718 df-iplp 6720 |
This theorem is referenced by: lteupri 6869 ltaprg 6871 enrer 6974 mulcmpblnr 6980 mulgt0sr 7016 srpospr 7021 |
Copyright terms: Public domain | W3C validator |