ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcanprlemu GIF version

Theorem addcanprlemu 6867
Description: Lemma for addcanprg 6868. (Contributed by Jim Kingdon, 25-Dec-2019.)
Assertion
Ref Expression
addcanprlemu (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (2nd𝐵) ⊆ (2nd𝐶))

Proof of Theorem addcanprlemu
Dummy variables 𝑓 𝑔 𝑞 𝑟 𝑠 𝑡 𝑢 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 6727 . . . . . . 7 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
2 prnminu 6741 . . . . . . 7 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑣 ∈ (2nd𝐵)) → ∃𝑟 ∈ (2nd𝐵)𝑟 <Q 𝑣)
31, 2sylan 277 . . . . . 6 ((𝐵P𝑣 ∈ (2nd𝐵)) → ∃𝑟 ∈ (2nd𝐵)𝑟 <Q 𝑣)
433ad2antl2 1102 . . . . 5 (((𝐴P𝐵P𝐶P) ∧ 𝑣 ∈ (2nd𝐵)) → ∃𝑟 ∈ (2nd𝐵)𝑟 <Q 𝑣)
54adantlr 461 . . . 4 ((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) → ∃𝑟 ∈ (2nd𝐵)𝑟 <Q 𝑣)
6 simprr 499 . . . . . 6 (((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) → 𝑟 <Q 𝑣)
7 ltexnqi 6661 . . . . . 6 (𝑟 <Q 𝑣 → ∃𝑤Q (𝑟 +Q 𝑤) = 𝑣)
86, 7syl 14 . . . . 5 (((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) → ∃𝑤Q (𝑟 +Q 𝑤) = 𝑣)
9 simprl 498 . . . . . . 7 ((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) → 𝑤Q)
10 halfnqq 6662 . . . . . . 7 (𝑤Q → ∃𝑡Q (𝑡 +Q 𝑡) = 𝑤)
119, 10syl 14 . . . . . 6 ((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) → ∃𝑡Q (𝑡 +Q 𝑡) = 𝑤)
12 prop 6727 . . . . . . . . . . . . . 14 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
13 prarloc2 6756 . . . . . . . . . . . . . 14 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑡Q) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
1412, 13sylan 277 . . . . . . . . . . . . 13 ((𝐴P𝑡Q) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
1514adantrr 463 . . . . . . . . . . . 12 ((𝐴P ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
16153ad2antl1 1101 . . . . . . . . . . 11 (((𝐴P𝐵P𝐶P) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
1716adantlr 461 . . . . . . . . . 10 ((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
1817adantlr 461 . . . . . . . . 9 (((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
1918adantlr 461 . . . . . . . 8 ((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
2019adantlr 461 . . . . . . 7 (((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
21 simplll 500 . . . . . . . . . . . . . 14 (((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) → (𝐴P𝐵P𝐶P))
2221ad3antrrr 476 . . . . . . . . . . . . 13 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝐴P𝐵P𝐶P))
2322simp1d 951 . . . . . . . . . . . 12 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝐴P)
2422simp2d 952 . . . . . . . . . . . 12 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝐵P)
25 addclpr 6789 . . . . . . . . . . . 12 ((𝐴P𝐵P) → (𝐴 +P 𝐵) ∈ P)
2623, 24, 25syl2anc 403 . . . . . . . . . . 11 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝐴 +P 𝐵) ∈ P)
27 prop 6727 . . . . . . . . . . 11 ((𝐴 +P 𝐵) ∈ P → ⟨(1st ‘(𝐴 +P 𝐵)), (2nd ‘(𝐴 +P 𝐵))⟩ ∈ P)
2826, 27syl 14 . . . . . . . . . 10 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ⟨(1st ‘(𝐴 +P 𝐵)), (2nd ‘(𝐴 +P 𝐵))⟩ ∈ P)
2923, 12syl 14 . . . . . . . . . . . . 13 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
30 simprl 498 . . . . . . . . . . . . 13 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑢 ∈ (1st𝐴))
31 elprnql 6733 . . . . . . . . . . . . 13 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑢 ∈ (1st𝐴)) → 𝑢Q)
3229, 30, 31syl2anc 403 . . . . . . . . . . . 12 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑢Q)
33 simplrl 502 . . . . . . . . . . . 12 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑡Q)
34 addclnq 6627 . . . . . . . . . . . 12 ((𝑢Q𝑡Q) → (𝑢 +Q 𝑡) ∈ Q)
3532, 33, 34syl2anc 403 . . . . . . . . . . 11 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑢 +Q 𝑡) ∈ Q)
3624, 1syl 14 . . . . . . . . . . . 12 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
37 simprl 498 . . . . . . . . . . . . 13 (((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) → 𝑟 ∈ (2nd𝐵))
3837ad3antrrr 476 . . . . . . . . . . . 12 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑟 ∈ (2nd𝐵))
39 elprnqu 6734 . . . . . . . . . . . 12 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑟 ∈ (2nd𝐵)) → 𝑟Q)
4036, 38, 39syl2anc 403 . . . . . . . . . . 11 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑟Q)
41 addclnq 6627 . . . . . . . . . . 11 (((𝑢 +Q 𝑡) ∈ Q𝑟Q) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ Q)
4235, 40, 41syl2anc 403 . . . . . . . . . 10 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ Q)
43 prdisj 6744 . . . . . . . . . 10 ((⟨(1st ‘(𝐴 +P 𝐵)), (2nd ‘(𝐴 +P 𝐵))⟩ ∈ P ∧ ((𝑢 +Q 𝑡) +Q 𝑟) ∈ Q) → ¬ (((𝑢 +Q 𝑡) +Q 𝑟) ∈ (1st ‘(𝐴 +P 𝐵)) ∧ ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵))))
4428, 42, 43syl2anc 403 . . . . . . . . 9 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ¬ (((𝑢 +Q 𝑡) +Q 𝑟) ∈ (1st ‘(𝐴 +P 𝐵)) ∧ ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵))))
45 addassnqg 6634 . . . . . . . . . . . . . . 15 ((𝑢Q𝑡Q𝑟Q) → ((𝑢 +Q 𝑡) +Q 𝑟) = (𝑢 +Q (𝑡 +Q 𝑟)))
4632, 33, 40, 45syl3anc 1170 . . . . . . . . . . . . . 14 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ((𝑢 +Q 𝑡) +Q 𝑟) = (𝑢 +Q (𝑡 +Q 𝑟)))
47 addcomnqg 6633 . . . . . . . . . . . . . . . 16 ((𝑡Q𝑟Q) → (𝑡 +Q 𝑟) = (𝑟 +Q 𝑡))
4847oveq2d 5559 . . . . . . . . . . . . . . 15 ((𝑡Q𝑟Q) → (𝑢 +Q (𝑡 +Q 𝑟)) = (𝑢 +Q (𝑟 +Q 𝑡)))
4933, 40, 48syl2anc 403 . . . . . . . . . . . . . 14 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑢 +Q (𝑡 +Q 𝑟)) = (𝑢 +Q (𝑟 +Q 𝑡)))
5046, 49eqtrd 2114 . . . . . . . . . . . . 13 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ((𝑢 +Q 𝑡) +Q 𝑟) = (𝑢 +Q (𝑟 +Q 𝑡)))
5150adantr 270 . . . . . . . . . . . 12 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → ((𝑢 +Q 𝑡) +Q 𝑟) = (𝑢 +Q (𝑟 +Q 𝑡)))
52 simplrl 502 . . . . . . . . . . . . 13 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → 𝑢 ∈ (1st𝐴))
53 simpr 108 . . . . . . . . . . . . 13 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → (𝑟 +Q 𝑡) ∈ (1st𝐶))
5423adantr 270 . . . . . . . . . . . . . 14 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → 𝐴P)
5522simp3d 953 . . . . . . . . . . . . . . 15 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝐶P)
5655adantr 270 . . . . . . . . . . . . . 14 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → 𝐶P)
57 df-iplp 6720 . . . . . . . . . . . . . . 15 +P = (𝑞P, 𝑠P ↦ ⟨{𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (1st𝑞) ∧ ∈ (1st𝑠) ∧ 𝑓 = (𝑔 +Q ))}, {𝑓Q ∣ ∃𝑔QQ (𝑔 ∈ (2nd𝑞) ∧ ∈ (2nd𝑠) ∧ 𝑓 = (𝑔 +Q ))}⟩)
58 addclnq 6627 . . . . . . . . . . . . . . 15 ((𝑔QQ) → (𝑔 +Q ) ∈ Q)
5957, 58genpprecll 6766 . . . . . . . . . . . . . 14 ((𝐴P𝐶P) → ((𝑢 ∈ (1st𝐴) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → (𝑢 +Q (𝑟 +Q 𝑡)) ∈ (1st ‘(𝐴 +P 𝐶))))
6054, 56, 59syl2anc 403 . . . . . . . . . . . . 13 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → ((𝑢 ∈ (1st𝐴) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → (𝑢 +Q (𝑟 +Q 𝑡)) ∈ (1st ‘(𝐴 +P 𝐶))))
6152, 53, 60mp2and 424 . . . . . . . . . . . 12 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → (𝑢 +Q (𝑟 +Q 𝑡)) ∈ (1st ‘(𝐴 +P 𝐶)))
6251, 61eqeltrd 2156 . . . . . . . . . . 11 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (1st ‘(𝐴 +P 𝐶)))
63 fveq2 5209 . . . . . . . . . . . . 13 ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → (1st ‘(𝐴 +P 𝐵)) = (1st ‘(𝐴 +P 𝐶)))
6463eleq2d 2149 . . . . . . . . . . . 12 ((𝐴 +P 𝐵) = (𝐴 +P 𝐶) → (((𝑢 +Q 𝑡) +Q 𝑟) ∈ (1st ‘(𝐴 +P 𝐵)) ↔ ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (1st ‘(𝐴 +P 𝐶))))
6564ad7antlr 485 . . . . . . . . . . 11 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → (((𝑢 +Q 𝑡) +Q 𝑟) ∈ (1st ‘(𝐴 +P 𝐵)) ↔ ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (1st ‘(𝐴 +P 𝐶))))
6662, 65mpbird 165 . . . . . . . . . 10 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (1st ‘(𝐴 +P 𝐵)))
6757, 58genppreclu 6767 . . . . . . . . . . . . . . . . . . 19 ((𝐴P𝐵P) → (((𝑢 +Q 𝑡) ∈ (2nd𝐴) ∧ 𝑟 ∈ (2nd𝐵)) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵))))
6867ancomsd 265 . . . . . . . . . . . . . . . . . 18 ((𝐴P𝐵P) → ((𝑟 ∈ (2nd𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴)) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵))))
69683adant3 959 . . . . . . . . . . . . . . . . 17 ((𝐴P𝐵P𝐶P) → ((𝑟 ∈ (2nd𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴)) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵))))
7069ad2antrr 472 . . . . . . . . . . . . . . . 16 ((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) → ((𝑟 ∈ (2nd𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴)) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵))))
7170imp 122 . . . . . . . . . . . . . . 15 (((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵)))
7271adantrlr 469 . . . . . . . . . . . . . 14 (((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ ((𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵)))
7372anassrs 392 . . . . . . . . . . . . 13 ((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴)) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵)))
7473ad2ant2rl 495 . . . . . . . . . . . 12 (((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵)))
7574adantlr 461 . . . . . . . . . . 11 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵)))
7675adantr 270 . . . . . . . . . 10 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵)))
7766, 76jca 300 . . . . . . . . 9 (((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ (𝑟 +Q 𝑡) ∈ (1st𝐶)) → (((𝑢 +Q 𝑡) +Q 𝑟) ∈ (1st ‘(𝐴 +P 𝐵)) ∧ ((𝑢 +Q 𝑡) +Q 𝑟) ∈ (2nd ‘(𝐴 +P 𝐵))))
7844, 77mtand 624 . . . . . . . 8 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ¬ (𝑟 +Q 𝑡) ∈ (1st𝐶))
79 prop 6727 . . . . . . . . . . 11 (𝐶P → ⟨(1st𝐶), (2nd𝐶)⟩ ∈ P)
8055, 79syl 14 . . . . . . . . . 10 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ⟨(1st𝐶), (2nd𝐶)⟩ ∈ P)
81 ltaddnq 6659 . . . . . . . . . . . . . 14 ((𝑡Q𝑡Q) → 𝑡 <Q (𝑡 +Q 𝑡))
8233, 33, 81syl2anc 403 . . . . . . . . . . . . 13 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑡 <Q (𝑡 +Q 𝑡))
83 simplrr 503 . . . . . . . . . . . . 13 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑡 +Q 𝑡) = 𝑤)
8482, 83breqtrd 3817 . . . . . . . . . . . 12 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑡 <Q 𝑤)
85 ltanqi 6654 . . . . . . . . . . . 12 ((𝑡 <Q 𝑤𝑟Q) → (𝑟 +Q 𝑡) <Q (𝑟 +Q 𝑤))
8684, 40, 85syl2anc 403 . . . . . . . . . . 11 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑟 +Q 𝑡) <Q (𝑟 +Q 𝑤))
87 simprr 499 . . . . . . . . . . . 12 ((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) → (𝑟 +Q 𝑤) = 𝑣)
8887ad2antrr 472 . . . . . . . . . . 11 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑟 +Q 𝑤) = 𝑣)
8986, 88breqtrd 3817 . . . . . . . . . 10 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑟 +Q 𝑡) <Q 𝑣)
90 prloc 6743 . . . . . . . . . 10 ((⟨(1st𝐶), (2nd𝐶)⟩ ∈ P ∧ (𝑟 +Q 𝑡) <Q 𝑣) → ((𝑟 +Q 𝑡) ∈ (1st𝐶) ∨ 𝑣 ∈ (2nd𝐶)))
9180, 89, 90syl2anc 403 . . . . . . . . 9 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ((𝑟 +Q 𝑡) ∈ (1st𝐶) ∨ 𝑣 ∈ (2nd𝐶)))
9291orcomd 681 . . . . . . . 8 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑣 ∈ (2nd𝐶) ∨ (𝑟 +Q 𝑡) ∈ (1st𝐶)))
9378, 92ecased 1281 . . . . . . 7 ((((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑣 ∈ (2nd𝐶))
9420, 93rexlimddv 2482 . . . . . 6 (((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) ∧ (𝑡Q ∧ (𝑡 +Q 𝑡) = 𝑤)) → 𝑣 ∈ (2nd𝐶))
9511, 94rexlimddv 2482 . . . . 5 ((((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) ∧ (𝑤Q ∧ (𝑟 +Q 𝑤) = 𝑣)) → 𝑣 ∈ (2nd𝐶))
968, 95rexlimddv 2482 . . . 4 (((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) ∧ (𝑟 ∈ (2nd𝐵) ∧ 𝑟 <Q 𝑣)) → 𝑣 ∈ (2nd𝐶))
975, 96rexlimddv 2482 . . 3 ((((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) ∧ 𝑣 ∈ (2nd𝐵)) → 𝑣 ∈ (2nd𝐶))
9897ex 113 . 2 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (𝑣 ∈ (2nd𝐵) → 𝑣 ∈ (2nd𝐶)))
9998ssrdv 3006 1 (((𝐴P𝐵P𝐶P) ∧ (𝐴 +P 𝐵) = (𝐴 +P 𝐶)) → (2nd𝐵) ⊆ (2nd𝐶))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 662  w3a 920   = wceq 1285  wcel 1434  wrex 2350  wss 2974  cop 3409   class class class wbr 3793  cfv 4932  (class class class)co 5543  1st c1st 5796  2nd c2nd 5797  Qcnq 6532   +Q cplq 6534   <Q cltq 6537  Pcnp 6543   +P cpp 6545
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-iinf 4337
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-tr 3884  df-eprel 4052  df-id 4056  df-po 4059  df-iso 4060  df-iord 4129  df-on 4131  df-suc 4134  df-iom 4340  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799  df-recs 5954  df-irdg 6019  df-1o 6065  df-2o 6066  df-oadd 6069  df-omul 6070  df-er 6172  df-ec 6174  df-qs 6178  df-ni 6556  df-pli 6557  df-mi 6558  df-lti 6559  df-plpq 6596  df-mpq 6597  df-enq 6599  df-nqqs 6600  df-plqqs 6601  df-mqqs 6602  df-1nqqs 6603  df-rq 6604  df-ltnqqs 6605  df-enq0 6676  df-nq0 6677  df-0nq0 6678  df-plq0 6679  df-mq0 6680  df-inp 6718  df-iplp 6720
This theorem is referenced by:  addcanprg  6868
  Copyright terms: Public domain W3C validator