Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  addcnsrec GIF version

 Description: Technical trick to permit re-use of some equivalence class lemmas for operation laws. See dfcnqs 6975 and mulcnsrec 6977. (Contributed by NM, 13-Aug-1995.)
Assertion
Ref Expression
addcnsrec (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ([⟨𝐴, 𝐵⟩] E + [⟨𝐶, 𝐷⟩] E ) = [⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩] E )

StepHypRef Expression
1 addcnsr 6968 . 2 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩) = ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩)
2 opelxpi 4404 . . . 4 ((𝐴R𝐵R) → ⟨𝐴, 𝐵⟩ ∈ (R × R))
3 ecidg 6201 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (R × R) → [⟨𝐴, 𝐵⟩] E = ⟨𝐴, 𝐵⟩)
42, 3syl 14 . . 3 ((𝐴R𝐵R) → [⟨𝐴, 𝐵⟩] E = ⟨𝐴, 𝐵⟩)
5 opelxpi 4404 . . . 4 ((𝐶R𝐷R) → ⟨𝐶, 𝐷⟩ ∈ (R × R))
6 ecidg 6201 . . . 4 (⟨𝐶, 𝐷⟩ ∈ (R × R) → [⟨𝐶, 𝐷⟩] E = ⟨𝐶, 𝐷⟩)
75, 6syl 14 . . 3 ((𝐶R𝐷R) → [⟨𝐶, 𝐷⟩] E = ⟨𝐶, 𝐷⟩)
84, 7oveqan12d 5559 . 2 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ([⟨𝐴, 𝐵⟩] E + [⟨𝐶, 𝐷⟩] E ) = (⟨𝐴, 𝐵⟩ + ⟨𝐶, 𝐷⟩))
9 addclsr 6896 . . . . 5 ((𝐴R𝐶R) → (𝐴 +R 𝐶) ∈ R)
109ad2ant2r 486 . . . 4 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (𝐴 +R 𝐶) ∈ R)
11 addclsr 6896 . . . . 5 ((𝐵R𝐷R) → (𝐵 +R 𝐷) ∈ R)
1211ad2ant2l 485 . . . 4 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → (𝐵 +R 𝐷) ∈ R)
13 opelxpi 4404 . . . 4 (((𝐴 +R 𝐶) ∈ R ∧ (𝐵 +R 𝐷) ∈ R) → ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩ ∈ (R × R))
1410, 12, 13syl2anc 397 . . 3 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩ ∈ (R × R))
15 ecidg 6201 . . 3 (⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩ ∈ (R × R) → [⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩] E = ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩)
1614, 15syl 14 . 2 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → [⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩] E = ⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩)
171, 8, 163eqtr4d 2098 1 (((𝐴R𝐵R) ∧ (𝐶R𝐷R)) → ([⟨𝐴, 𝐵⟩] E + [⟨𝐶, 𝐷⟩] E ) = [⟨(𝐴 +R 𝐶), (𝐵 +R 𝐷)⟩] E )
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 101   = wceq 1259   ∈ wcel 1409  ⟨cop 3406   E cep 4052   × cxp 4371  ◡ccnv 4372  (class class class)co 5540  [cec 6135  Rcnr 6453   +R cplr 6457   + caddc 6950 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339 This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-0nq0 6582  df-plq0 6583  df-mq0 6584  df-inp 6622  df-iplp 6624  df-enr 6869  df-nr 6870  df-plr 6871  df-c 6953  df-add 6958 This theorem is referenced by:  axaddass  7004  axdistr  7006
 Copyright terms: Public domain W3C validator