![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > adddirp1d | GIF version |
Description: Distributive law, plus 1 version. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
adddirp1d.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
adddirp1d.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
adddirp1d | ⊢ (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | adddirp1d.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | 1cnd 7267 | . . 3 ⊢ (𝜑 → 1 ∈ ℂ) | |
3 | adddirp1d.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | 1, 2, 3 | adddird 7276 | . 2 ⊢ (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + (1 · 𝐵))) |
5 | 3 | mulid2d 7269 | . . 3 ⊢ (𝜑 → (1 · 𝐵) = 𝐵) |
6 | 5 | oveq2d 5580 | . 2 ⊢ (𝜑 → ((𝐴 · 𝐵) + (1 · 𝐵)) = ((𝐴 · 𝐵) + 𝐵)) |
7 | 4, 6 | eqtrd 2115 | 1 ⊢ (𝜑 → ((𝐴 + 1) · 𝐵) = ((𝐴 · 𝐵) + 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1285 ∈ wcel 1434 (class class class)co 5564 ℂcc 7111 1c1 7114 + caddc 7116 · cmul 7118 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-resscn 7200 ax-1cn 7201 ax-icn 7203 ax-addcl 7204 ax-mulcl 7206 ax-mulcom 7209 ax-mulass 7211 ax-distr 7212 ax-1rid 7215 ax-cnre 7219 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ral 2358 df-rex 2359 df-v 2612 df-un 2986 df-in 2988 df-ss 2995 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-br 3806 df-iota 4917 df-fv 4960 df-ov 5567 |
This theorem is referenced by: modqvalp1 9495 hashxp 9920 divalglemnqt 10545 |
Copyright terms: Public domain | W3C validator |