ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addgt0sr GIF version

Theorem addgt0sr 6917
Description: The sum of two positive signed reals is positive. (Contributed by NM, 14-May-1996.)
Assertion
Ref Expression
addgt0sr ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 +R 𝐵))

Proof of Theorem addgt0sr
StepHypRef Expression
1 simpr 107 . . . 4 ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R 𝐵)
2 ltrelsr 6880 . . . . . . 7 <R ⊆ (R × R)
32brel 4419 . . . . . 6 (0R <R 𝐵 → (0RR𝐵R))
43simprd 111 . . . . 5 (0R <R 𝐵𝐵R)
52brel 4419 . . . . . 6 (0R <R 𝐴 → (0RR𝐴R))
65simprd 111 . . . . 5 (0R <R 𝐴𝐴R)
7 0r 6892 . . . . . 6 0RR
8 ltasrg 6912 . . . . . 6 ((0RR𝐵R𝐴R) → (0R <R 𝐵 ↔ (𝐴 +R 0R) <R (𝐴 +R 𝐵)))
97, 8mp3an1 1230 . . . . 5 ((𝐵R𝐴R) → (0R <R 𝐵 ↔ (𝐴 +R 0R) <R (𝐴 +R 𝐵)))
104, 6, 9syl2anr 278 . . . 4 ((0R <R 𝐴 ∧ 0R <R 𝐵) → (0R <R 𝐵 ↔ (𝐴 +R 0R) <R (𝐴 +R 𝐵)))
111, 10mpbid 139 . . 3 ((0R <R 𝐴 ∧ 0R <R 𝐵) → (𝐴 +R 0R) <R (𝐴 +R 𝐵))
126adantr 265 . . . 4 ((0R <R 𝐴 ∧ 0R <R 𝐵) → 𝐴R)
13 0idsr 6909 . . . . 5 (𝐴R → (𝐴 +R 0R) = 𝐴)
1413breq1d 3801 . . . 4 (𝐴R → ((𝐴 +R 0R) <R (𝐴 +R 𝐵) ↔ 𝐴 <R (𝐴 +R 𝐵)))
1512, 14syl 14 . . 3 ((0R <R 𝐴 ∧ 0R <R 𝐵) → ((𝐴 +R 0R) <R (𝐴 +R 𝐵) ↔ 𝐴 <R (𝐴 +R 𝐵)))
1611, 15mpbid 139 . 2 ((0R <R 𝐴 ∧ 0R <R 𝐵) → 𝐴 <R (𝐴 +R 𝐵))
17 ltsosr 6906 . . 3 <R Or R
1817, 2sotri 4747 . 2 ((0R <R 𝐴𝐴 <R (𝐴 +R 𝐵)) → 0R <R (𝐴 +R 𝐵))
1916, 18syldan 270 1 ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 +R 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102  wcel 1409   class class class wbr 3791  (class class class)co 5539  Rcnr 6452  0Rc0r 6453   +R cplr 6456   <R cltr 6458
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-iinf 4338
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-tr 3882  df-eprel 4053  df-id 4057  df-po 4060  df-iso 4061  df-iord 4130  df-on 4132  df-suc 4135  df-iom 4341  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795  df-recs 5950  df-irdg 5987  df-1o 6031  df-2o 6032  df-oadd 6035  df-omul 6036  df-er 6136  df-ec 6138  df-qs 6142  df-ni 6459  df-pli 6460  df-mi 6461  df-lti 6462  df-plpq 6499  df-mpq 6500  df-enq 6502  df-nqqs 6503  df-plqqs 6504  df-mqqs 6505  df-1nqqs 6506  df-rq 6507  df-ltnqqs 6508  df-enq0 6579  df-nq0 6580  df-0nq0 6581  df-plq0 6582  df-mq0 6583  df-inp 6621  df-i1p 6622  df-iplp 6623  df-iltp 6625  df-enr 6868  df-nr 6869  df-plr 6870  df-ltr 6872  df-0r 6873
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator