ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlocprlemeqgt GIF version

Theorem addlocprlemeqgt 7333
Description: Lemma for addlocpr 7337. This is a step used in both the 𝑄 = (𝐷 +Q 𝐸) and (𝐷 +Q 𝐸) <Q 𝑄 cases. (Contributed by Jim Kingdon, 7-Dec-2019.)
Hypotheses
Ref Expression
addlocprlem.a (𝜑𝐴P)
addlocprlem.b (𝜑𝐵P)
addlocprlem.qr (𝜑𝑄 <Q 𝑅)
addlocprlem.p (𝜑𝑃Q)
addlocprlem.qppr (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅)
addlocprlem.dlo (𝜑𝐷 ∈ (1st𝐴))
addlocprlem.uup (𝜑𝑈 ∈ (2nd𝐴))
addlocprlem.du (𝜑𝑈 <Q (𝐷 +Q 𝑃))
addlocprlem.elo (𝜑𝐸 ∈ (1st𝐵))
addlocprlem.tup (𝜑𝑇 ∈ (2nd𝐵))
addlocprlem.et (𝜑𝑇 <Q (𝐸 +Q 𝑃))
Assertion
Ref Expression
addlocprlemeqgt (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)))

Proof of Theorem addlocprlemeqgt
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addlocprlem.du . . 3 (𝜑𝑈 <Q (𝐷 +Q 𝑃))
2 addlocprlem.et . . 3 (𝜑𝑇 <Q (𝐸 +Q 𝑃))
3 addlocprlem.a . . . . . 6 (𝜑𝐴P)
4 prop 7276 . . . . . 6 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
53, 4syl 14 . . . . 5 (𝜑 → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
6 addlocprlem.uup . . . . 5 (𝜑𝑈 ∈ (2nd𝐴))
7 elprnqu 7283 . . . . 5 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑈 ∈ (2nd𝐴)) → 𝑈Q)
85, 6, 7syl2anc 408 . . . 4 (𝜑𝑈Q)
9 addlocprlem.dlo . . . . . 6 (𝜑𝐷 ∈ (1st𝐴))
10 elprnql 7282 . . . . . 6 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝐷 ∈ (1st𝐴)) → 𝐷Q)
115, 9, 10syl2anc 408 . . . . 5 (𝜑𝐷Q)
12 addlocprlem.p . . . . 5 (𝜑𝑃Q)
13 addclnq 7176 . . . . 5 ((𝐷Q𝑃Q) → (𝐷 +Q 𝑃) ∈ Q)
1411, 12, 13syl2anc 408 . . . 4 (𝜑 → (𝐷 +Q 𝑃) ∈ Q)
15 addlocprlem.b . . . . . 6 (𝜑𝐵P)
16 prop 7276 . . . . . 6 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
1715, 16syl 14 . . . . 5 (𝜑 → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
18 addlocprlem.tup . . . . 5 (𝜑𝑇 ∈ (2nd𝐵))
19 elprnqu 7283 . . . . 5 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑇 ∈ (2nd𝐵)) → 𝑇Q)
2017, 18, 19syl2anc 408 . . . 4 (𝜑𝑇Q)
21 addlocprlem.elo . . . . . 6 (𝜑𝐸 ∈ (1st𝐵))
22 elprnql 7282 . . . . . 6 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝐸 ∈ (1st𝐵)) → 𝐸Q)
2317, 21, 22syl2anc 408 . . . . 5 (𝜑𝐸Q)
24 addclnq 7176 . . . . 5 ((𝐸Q𝑃Q) → (𝐸 +Q 𝑃) ∈ Q)
2523, 12, 24syl2anc 408 . . . 4 (𝜑 → (𝐸 +Q 𝑃) ∈ Q)
26 lt2addnq 7205 . . . 4 (((𝑈Q ∧ (𝐷 +Q 𝑃) ∈ Q) ∧ (𝑇Q ∧ (𝐸 +Q 𝑃) ∈ Q)) → ((𝑈 <Q (𝐷 +Q 𝑃) ∧ 𝑇 <Q (𝐸 +Q 𝑃)) → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝑃) +Q (𝐸 +Q 𝑃))))
278, 14, 20, 25, 26syl22anc 1217 . . 3 (𝜑 → ((𝑈 <Q (𝐷 +Q 𝑃) ∧ 𝑇 <Q (𝐸 +Q 𝑃)) → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝑃) +Q (𝐸 +Q 𝑃))))
281, 2, 27mp2and 429 . 2 (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝑃) +Q (𝐸 +Q 𝑃)))
29 addcomnqg 7182 . . . 4 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
3029adantl 275 . . 3 ((𝜑 ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
31 addassnqg 7183 . . . 4 ((𝑓Q𝑔QQ) → ((𝑓 +Q 𝑔) +Q ) = (𝑓 +Q (𝑔 +Q )))
3231adantl 275 . . 3 ((𝜑 ∧ (𝑓Q𝑔QQ)) → ((𝑓 +Q 𝑔) +Q ) = (𝑓 +Q (𝑔 +Q )))
33 addclnq 7176 . . . 4 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) ∈ Q)
3433adantl 275 . . 3 ((𝜑 ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) ∈ Q)
3511, 12, 23, 30, 32, 12, 34caov4d 5948 . 2 (𝜑 → ((𝐷 +Q 𝑃) +Q (𝐸 +Q 𝑃)) = ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)))
3628, 35breqtrd 3949 1 (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 962   = wceq 1331  wcel 1480  cop 3525   class class class wbr 3924  cfv 5118  (class class class)co 5767  1st c1st 6029  2nd c2nd 6030  Qcnq 7081   +Q cplq 7083   <Q cltq 7086  Pcnp 7092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-eprel 4206  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-oadd 6310  df-omul 6311  df-er 6422  df-ec 6424  df-qs 6428  df-ni 7105  df-pli 7106  df-mi 7107  df-lti 7108  df-plpq 7145  df-enq 7148  df-nqqs 7149  df-plqqs 7150  df-ltnqqs 7154  df-inp 7267
This theorem is referenced by:  addlocprlemeq  7334  addlocprlemgt  7335
  Copyright terms: Public domain W3C validator