ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlocprlemgt GIF version

Theorem addlocprlemgt 6689
Description: Lemma for addlocpr 6691. The (𝐷 +Q 𝐸) <Q 𝑄 case. (Contributed by Jim Kingdon, 6-Dec-2019.)
Hypotheses
Ref Expression
addlocprlem.a (𝜑𝐴P)
addlocprlem.b (𝜑𝐵P)
addlocprlem.qr (𝜑𝑄 <Q 𝑅)
addlocprlem.p (𝜑𝑃Q)
addlocprlem.qppr (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅)
addlocprlem.dlo (𝜑𝐷 ∈ (1st𝐴))
addlocprlem.uup (𝜑𝑈 ∈ (2nd𝐴))
addlocprlem.du (𝜑𝑈 <Q (𝐷 +Q 𝑃))
addlocprlem.elo (𝜑𝐸 ∈ (1st𝐵))
addlocprlem.tup (𝜑𝑇 ∈ (2nd𝐵))
addlocprlem.et (𝜑𝑇 <Q (𝐸 +Q 𝑃))
Assertion
Ref Expression
addlocprlemgt (𝜑 → ((𝐷 +Q 𝐸) <Q 𝑄𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))

Proof of Theorem addlocprlemgt
StepHypRef Expression
1 addlocprlem.a . . . . . . 7 (𝜑𝐴P)
2 addlocprlem.b . . . . . . 7 (𝜑𝐵P)
3 addlocprlem.qr . . . . . . 7 (𝜑𝑄 <Q 𝑅)
4 addlocprlem.p . . . . . . 7 (𝜑𝑃Q)
5 addlocprlem.qppr . . . . . . 7 (𝜑 → (𝑄 +Q (𝑃 +Q 𝑃)) = 𝑅)
6 addlocprlem.dlo . . . . . . 7 (𝜑𝐷 ∈ (1st𝐴))
7 addlocprlem.uup . . . . . . 7 (𝜑𝑈 ∈ (2nd𝐴))
8 addlocprlem.du . . . . . . 7 (𝜑𝑈 <Q (𝐷 +Q 𝑃))
9 addlocprlem.elo . . . . . . 7 (𝜑𝐸 ∈ (1st𝐵))
10 addlocprlem.tup . . . . . . 7 (𝜑𝑇 ∈ (2nd𝐵))
11 addlocprlem.et . . . . . . 7 (𝜑𝑇 <Q (𝐸 +Q 𝑃))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11addlocprlemeqgt 6687 . . . . . 6 (𝜑 → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)))
1312adantr 265 . . . . 5 ((𝜑 ∧ (𝐷 +Q 𝐸) <Q 𝑄) → (𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)))
14 prop 6630 . . . . . . . . . . . 12 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
151, 14syl 14 . . . . . . . . . . 11 (𝜑 → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
16 elprnql 6636 . . . . . . . . . . 11 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝐷 ∈ (1st𝐴)) → 𝐷Q)
1715, 6, 16syl2anc 397 . . . . . . . . . 10 (𝜑𝐷Q)
18 prop 6630 . . . . . . . . . . . 12 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
192, 18syl 14 . . . . . . . . . . 11 (𝜑 → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
20 elprnql 6636 . . . . . . . . . . 11 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝐸 ∈ (1st𝐵)) → 𝐸Q)
2119, 9, 20syl2anc 397 . . . . . . . . . 10 (𝜑𝐸Q)
22 addclnq 6530 . . . . . . . . . 10 ((𝐷Q𝐸Q) → (𝐷 +Q 𝐸) ∈ Q)
2317, 21, 22syl2anc 397 . . . . . . . . 9 (𝜑 → (𝐷 +Q 𝐸) ∈ Q)
24 ltrelnq 6520 . . . . . . . . . . . 12 <Q ⊆ (Q × Q)
2524brel 4419 . . . . . . . . . . 11 (𝑄 <Q 𝑅 → (𝑄Q𝑅Q))
263, 25syl 14 . . . . . . . . . 10 (𝜑 → (𝑄Q𝑅Q))
2726simpld 109 . . . . . . . . 9 (𝜑𝑄Q)
28 addclnq 6530 . . . . . . . . . 10 ((𝑃Q𝑃Q) → (𝑃 +Q 𝑃) ∈ Q)
294, 4, 28syl2anc 397 . . . . . . . . 9 (𝜑 → (𝑃 +Q 𝑃) ∈ Q)
30 ltanqg 6555 . . . . . . . . 9 (((𝐷 +Q 𝐸) ∈ Q𝑄Q ∧ (𝑃 +Q 𝑃) ∈ Q) → ((𝐷 +Q 𝐸) <Q 𝑄 ↔ ((𝑃 +Q 𝑃) +Q (𝐷 +Q 𝐸)) <Q ((𝑃 +Q 𝑃) +Q 𝑄)))
3123, 27, 29, 30syl3anc 1146 . . . . . . . 8 (𝜑 → ((𝐷 +Q 𝐸) <Q 𝑄 ↔ ((𝑃 +Q 𝑃) +Q (𝐷 +Q 𝐸)) <Q ((𝑃 +Q 𝑃) +Q 𝑄)))
32 addcomnqg 6536 . . . . . . . . . 10 (((𝑃 +Q 𝑃) ∈ Q ∧ (𝐷 +Q 𝐸) ∈ Q) → ((𝑃 +Q 𝑃) +Q (𝐷 +Q 𝐸)) = ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)))
3329, 23, 32syl2anc 397 . . . . . . . . 9 (𝜑 → ((𝑃 +Q 𝑃) +Q (𝐷 +Q 𝐸)) = ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)))
34 addcomnqg 6536 . . . . . . . . . 10 (((𝑃 +Q 𝑃) ∈ Q𝑄Q) → ((𝑃 +Q 𝑃) +Q 𝑄) = (𝑄 +Q (𝑃 +Q 𝑃)))
3529, 27, 34syl2anc 397 . . . . . . . . 9 (𝜑 → ((𝑃 +Q 𝑃) +Q 𝑄) = (𝑄 +Q (𝑃 +Q 𝑃)))
3633, 35breq12d 3804 . . . . . . . 8 (𝜑 → (((𝑃 +Q 𝑃) +Q (𝐷 +Q 𝐸)) <Q ((𝑃 +Q 𝑃) +Q 𝑄) ↔ ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q (𝑄 +Q (𝑃 +Q 𝑃))))
3731, 36bitrd 181 . . . . . . 7 (𝜑 → ((𝐷 +Q 𝐸) <Q 𝑄 ↔ ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q (𝑄 +Q (𝑃 +Q 𝑃))))
3837biimpa 284 . . . . . 6 ((𝜑 ∧ (𝐷 +Q 𝐸) <Q 𝑄) → ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q (𝑄 +Q (𝑃 +Q 𝑃)))
395breq2d 3803 . . . . . . 7 (𝜑 → (((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q (𝑄 +Q (𝑃 +Q 𝑃)) ↔ ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q 𝑅))
4039adantr 265 . . . . . 6 ((𝜑 ∧ (𝐷 +Q 𝐸) <Q 𝑄) → (((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q (𝑄 +Q (𝑃 +Q 𝑃)) ↔ ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q 𝑅))
4138, 40mpbid 139 . . . . 5 ((𝜑 ∧ (𝐷 +Q 𝐸) <Q 𝑄) → ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q 𝑅)
4213, 41jca 294 . . . 4 ((𝜑 ∧ (𝐷 +Q 𝐸) <Q 𝑄) → ((𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) ∧ ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q 𝑅))
43 ltsonq 6553 . . . . 5 <Q Or Q
4443, 24sotri 4747 . . . 4 (((𝑈 +Q 𝑇) <Q ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) ∧ ((𝐷 +Q 𝐸) +Q (𝑃 +Q 𝑃)) <Q 𝑅) → (𝑈 +Q 𝑇) <Q 𝑅)
4542, 44syl 14 . . 3 ((𝜑 ∧ (𝐷 +Q 𝐸) <Q 𝑄) → (𝑈 +Q 𝑇) <Q 𝑅)
461, 7jca 294 . . . . 5 (𝜑 → (𝐴P𝑈 ∈ (2nd𝐴)))
472, 10jca 294 . . . . 5 (𝜑 → (𝐵P𝑇 ∈ (2nd𝐵)))
4826simprd 111 . . . . 5 (𝜑𝑅Q)
49 addnqpru 6685 . . . . 5 ((((𝐴P𝑈 ∈ (2nd𝐴)) ∧ (𝐵P𝑇 ∈ (2nd𝐵))) ∧ 𝑅Q) → ((𝑈 +Q 𝑇) <Q 𝑅𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))
5046, 47, 48, 49syl21anc 1145 . . . 4 (𝜑 → ((𝑈 +Q 𝑇) <Q 𝑅𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))
5150adantr 265 . . 3 ((𝜑 ∧ (𝐷 +Q 𝐸) <Q 𝑄) → ((𝑈 +Q 𝑇) <Q 𝑅𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))
5245, 51mpd 13 . 2 ((𝜑 ∧ (𝐷 +Q 𝐸) <Q 𝑄) → 𝑅 ∈ (2nd ‘(𝐴 +P 𝐵)))
5352ex 112 1 (𝜑 → ((𝐷 +Q 𝐸) <Q 𝑄𝑅 ∈ (2nd ‘(𝐴 +P 𝐵))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102   = wceq 1259  wcel 1409  cop 3405   class class class wbr 3791  cfv 4929  (class class class)co 5539  1st c1st 5792  2nd c2nd 5793  Qcnq 6435   +Q cplq 6437   <Q cltq 6440  Pcnp 6446   +P cpp 6448
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-iinf 4338
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-tr 3882  df-eprel 4053  df-id 4057  df-po 4060  df-iso 4061  df-iord 4130  df-on 4132  df-suc 4135  df-iom 4341  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795  df-recs 5950  df-irdg 5987  df-1o 6031  df-oadd 6035  df-omul 6036  df-er 6136  df-ec 6138  df-qs 6142  df-ni 6459  df-pli 6460  df-mi 6461  df-lti 6462  df-plpq 6499  df-mpq 6500  df-enq 6502  df-nqqs 6503  df-plqqs 6504  df-mqqs 6505  df-1nqqs 6506  df-rq 6507  df-ltnqqs 6508  df-inp 6621  df-iplp 6623
This theorem is referenced by:  addlocprlem  6690
  Copyright terms: Public domain W3C validator