ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnidpig GIF version

Theorem addnidpig 6577
Description: There is no identity element for addition on positive integers. (Contributed by NM, 28-Nov-1995.)
Assertion
Ref Expression
addnidpig ((𝐴N𝐵N) → ¬ (𝐴 +N 𝐵) = 𝐴)

Proof of Theorem addnidpig
StepHypRef Expression
1 pinn 6550 . . 3 (𝐴N𝐴 ∈ ω)
2 elni2 6555 . . . 4 (𝐵N ↔ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵))
3 nnaordi 6140 . . . . . . 7 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝐵 → (𝐴 +𝑜 ∅) ∈ (𝐴 +𝑜 𝐵)))
4 nna0 6111 . . . . . . . . . 10 (𝐴 ∈ ω → (𝐴 +𝑜 ∅) = 𝐴)
54eleq1d 2148 . . . . . . . . 9 (𝐴 ∈ ω → ((𝐴 +𝑜 ∅) ∈ (𝐴 +𝑜 𝐵) ↔ 𝐴 ∈ (𝐴 +𝑜 𝐵)))
6 nnord 4354 . . . . . . . . . . . 12 (𝐴 ∈ ω → Ord 𝐴)
7 ordirr 4287 . . . . . . . . . . . 12 (Ord 𝐴 → ¬ 𝐴𝐴)
86, 7syl 14 . . . . . . . . . . 11 (𝐴 ∈ ω → ¬ 𝐴𝐴)
9 eleq2 2143 . . . . . . . . . . . 12 ((𝐴 +𝑜 𝐵) = 𝐴 → (𝐴 ∈ (𝐴 +𝑜 𝐵) ↔ 𝐴𝐴))
109notbid 625 . . . . . . . . . . 11 ((𝐴 +𝑜 𝐵) = 𝐴 → (¬ 𝐴 ∈ (𝐴 +𝑜 𝐵) ↔ ¬ 𝐴𝐴))
118, 10syl5ibrcom 155 . . . . . . . . . 10 (𝐴 ∈ ω → ((𝐴 +𝑜 𝐵) = 𝐴 → ¬ 𝐴 ∈ (𝐴 +𝑜 𝐵)))
1211con2d 587 . . . . . . . . 9 (𝐴 ∈ ω → (𝐴 ∈ (𝐴 +𝑜 𝐵) → ¬ (𝐴 +𝑜 𝐵) = 𝐴))
135, 12sylbid 148 . . . . . . . 8 (𝐴 ∈ ω → ((𝐴 +𝑜 ∅) ∈ (𝐴 +𝑜 𝐵) → ¬ (𝐴 +𝑜 𝐵) = 𝐴))
1413adantl 271 . . . . . . 7 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → ((𝐴 +𝑜 ∅) ∈ (𝐴 +𝑜 𝐵) → ¬ (𝐴 +𝑜 𝐵) = 𝐴))
153, 14syld 44 . . . . . 6 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝐵 → ¬ (𝐴 +𝑜 𝐵) = 𝐴))
1615expcom 114 . . . . 5 (𝐴 ∈ ω → (𝐵 ∈ ω → (∅ ∈ 𝐵 → ¬ (𝐴 +𝑜 𝐵) = 𝐴)))
1716imp32 253 . . . 4 ((𝐴 ∈ ω ∧ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵)) → ¬ (𝐴 +𝑜 𝐵) = 𝐴)
182, 17sylan2b 281 . . 3 ((𝐴 ∈ ω ∧ 𝐵N) → ¬ (𝐴 +𝑜 𝐵) = 𝐴)
191, 18sylan 277 . 2 ((𝐴N𝐵N) → ¬ (𝐴 +𝑜 𝐵) = 𝐴)
20 addpiord 6557 . . 3 ((𝐴N𝐵N) → (𝐴 +N 𝐵) = (𝐴 +𝑜 𝐵))
2120eqeq1d 2090 . 2 ((𝐴N𝐵N) → ((𝐴 +N 𝐵) = 𝐴 ↔ (𝐴 +𝑜 𝐵) = 𝐴))
2219, 21mtbird 631 1 ((𝐴N𝐵N) → ¬ (𝐴 +N 𝐵) = 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102   = wceq 1285  wcel 1434  c0 3252  Ord word 4119  ωcom 4333  (class class class)co 5537   +𝑜 coa 6056  Ncnpi 6513   +N cpli 6514
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3895  ax-sep 3898  ax-nul 3906  ax-pow 3950  ax-pr 3966  ax-un 4190  ax-setind 4282  ax-iinf 4331
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3253  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3604  df-int 3639  df-iun 3682  df-br 3788  df-opab 3842  df-mpt 3843  df-tr 3878  df-id 4050  df-iord 4123  df-on 4125  df-suc 4128  df-iom 4334  df-xp 4371  df-rel 4372  df-cnv 4373  df-co 4374  df-dm 4375  df-rn 4376  df-res 4377  df-ima 4378  df-iota 4891  df-fun 4928  df-fn 4929  df-f 4930  df-f1 4931  df-fo 4932  df-f1o 4933  df-fv 4934  df-ov 5540  df-oprab 5541  df-mpt2 5542  df-1st 5792  df-2nd 5793  df-recs 5948  df-irdg 6013  df-oadd 6063  df-ni 6545  df-pli 6546
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator