ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnidpig GIF version

Theorem addnidpig 6377
Description: There is no identity element for addition on positive integers. (Contributed by NM, 28-Nov-1995.)
Assertion
Ref Expression
addnidpig ((𝐴N𝐵N) → ¬ (𝐴 +N 𝐵) = 𝐴)

Proof of Theorem addnidpig
StepHypRef Expression
1 pinn 6350 . . 3 (𝐴N𝐴 ∈ ω)
2 elni2 6355 . . . 4 (𝐵N ↔ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵))
3 nnaordi 6040 . . . . . . 7 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝐵 → (𝐴 +𝑜 ∅) ∈ (𝐴 +𝑜 𝐵)))
4 nna0 6014 . . . . . . . . . 10 (𝐴 ∈ ω → (𝐴 +𝑜 ∅) = 𝐴)
54eleq1d 2106 . . . . . . . . 9 (𝐴 ∈ ω → ((𝐴 +𝑜 ∅) ∈ (𝐴 +𝑜 𝐵) ↔ 𝐴 ∈ (𝐴 +𝑜 𝐵)))
6 nnord 4295 . . . . . . . . . . . 12 (𝐴 ∈ ω → Ord 𝐴)
7 ordirr 4235 . . . . . . . . . . . 12 (Ord 𝐴 → ¬ 𝐴𝐴)
86, 7syl 14 . . . . . . . . . . 11 (𝐴 ∈ ω → ¬ 𝐴𝐴)
9 eleq2 2101 . . . . . . . . . . . 12 ((𝐴 +𝑜 𝐵) = 𝐴 → (𝐴 ∈ (𝐴 +𝑜 𝐵) ↔ 𝐴𝐴))
109notbid 592 . . . . . . . . . . 11 ((𝐴 +𝑜 𝐵) = 𝐴 → (¬ 𝐴 ∈ (𝐴 +𝑜 𝐵) ↔ ¬ 𝐴𝐴))
118, 10syl5ibrcom 146 . . . . . . . . . 10 (𝐴 ∈ ω → ((𝐴 +𝑜 𝐵) = 𝐴 → ¬ 𝐴 ∈ (𝐴 +𝑜 𝐵)))
1211con2d 554 . . . . . . . . 9 (𝐴 ∈ ω → (𝐴 ∈ (𝐴 +𝑜 𝐵) → ¬ (𝐴 +𝑜 𝐵) = 𝐴))
135, 12sylbid 139 . . . . . . . 8 (𝐴 ∈ ω → ((𝐴 +𝑜 ∅) ∈ (𝐴 +𝑜 𝐵) → ¬ (𝐴 +𝑜 𝐵) = 𝐴))
1413adantl 262 . . . . . . 7 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → ((𝐴 +𝑜 ∅) ∈ (𝐴 +𝑜 𝐵) → ¬ (𝐴 +𝑜 𝐵) = 𝐴))
153, 14syld 40 . . . . . 6 ((𝐵 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝐵 → ¬ (𝐴 +𝑜 𝐵) = 𝐴))
1615expcom 109 . . . . 5 (𝐴 ∈ ω → (𝐵 ∈ ω → (∅ ∈ 𝐵 → ¬ (𝐴 +𝑜 𝐵) = 𝐴)))
1716imp32 244 . . . 4 ((𝐴 ∈ ω ∧ (𝐵 ∈ ω ∧ ∅ ∈ 𝐵)) → ¬ (𝐴 +𝑜 𝐵) = 𝐴)
182, 17sylan2b 271 . . 3 ((𝐴 ∈ ω ∧ 𝐵N) → ¬ (𝐴 +𝑜 𝐵) = 𝐴)
191, 18sylan 267 . 2 ((𝐴N𝐵N) → ¬ (𝐴 +𝑜 𝐵) = 𝐴)
20 addpiord 6357 . . 3 ((𝐴N𝐵N) → (𝐴 +N 𝐵) = (𝐴 +𝑜 𝐵))
2120eqeq1d 2048 . 2 ((𝐴N𝐵N) → ((𝐴 +N 𝐵) = 𝐴 ↔ (𝐴 +𝑜 𝐵) = 𝐴))
2219, 21mtbird 598 1 ((𝐴N𝐵N) → ¬ (𝐴 +N 𝐵) = 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 97   = wceq 1243  wcel 1393  c0 3221  Ord word 4070  ωcom 4274  (class class class)co 5473   +𝑜 coa 5959  Ncnpi 6313   +N cpli 6314
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3868  ax-sep 3871  ax-nul 3879  ax-pow 3923  ax-pr 3940  ax-un 4141  ax-setind 4230  ax-iinf 4272
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2308  df-rex 2309  df-reu 2310  df-rab 2312  df-v 2556  df-sbc 2762  df-csb 2850  df-dif 2917  df-un 2919  df-in 2921  df-ss 2928  df-nul 3222  df-pw 3358  df-sn 3378  df-pr 3379  df-op 3381  df-uni 3577  df-int 3612  df-iun 3655  df-br 3761  df-opab 3815  df-mpt 3816  df-tr 3851  df-id 4026  df-iord 4074  df-on 4076  df-suc 4079  df-iom 4275  df-xp 4312  df-rel 4313  df-cnv 4314  df-co 4315  df-dm 4316  df-rn 4317  df-res 4318  df-ima 4319  df-iota 4828  df-fun 4865  df-fn 4866  df-f 4867  df-f1 4868  df-fo 4869  df-f1o 4870  df-fv 4871  df-ov 5476  df-oprab 5477  df-mpt2 5478  df-1st 5728  df-2nd 5729  df-recs 5881  df-irdg 5918  df-oadd 5966  df-ni 6345  df-pli 6346
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator