ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addnnnq0 GIF version

Theorem addnnnq0 6736
Description: Addition of non-negative fractions in terms of natural numbers. (Contributed by Jim Kingdon, 22-Nov-2019.)
Assertion
Ref Expression
addnnnq0 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q0 +Q0 [⟨𝐶, 𝐷⟩] ~Q0 ) = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 )

Proof of Theorem addnnnq0
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxpi 4422 . . . 4 ((𝐴 ∈ ω ∧ 𝐵N) → ⟨𝐴, 𝐵⟩ ∈ (ω × N))
2 enq0ex 6726 . . . . 5 ~Q0 ∈ V
32ecelqsi 6247 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (ω × N) → [⟨𝐴, 𝐵⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
41, 3syl 14 . . 3 ((𝐴 ∈ ω ∧ 𝐵N) → [⟨𝐴, 𝐵⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
5 opelxpi 4422 . . . 4 ((𝐶 ∈ ω ∧ 𝐷N) → ⟨𝐶, 𝐷⟩ ∈ (ω × N))
62ecelqsi 6247 . . . 4 (⟨𝐶, 𝐷⟩ ∈ (ω × N) → [⟨𝐶, 𝐷⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
75, 6syl 14 . . 3 ((𝐶 ∈ ω ∧ 𝐷N) → [⟨𝐶, 𝐷⟩] ~Q0 ∈ ((ω × N) / ~Q0 ))
84, 7anim12i 331 . 2 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q0 ∈ ((ω × N) / ~Q0 ) ∧ [⟨𝐶, 𝐷⟩] ~Q0 ∈ ((ω × N) / ~Q0 )))
9 eqid 2083 . . . 4 [⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0
10 eqid 2083 . . . 4 [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0
119, 10pm3.2i 266 . . 3 ([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 )
12 eqid 2083 . . 3 [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0
13 opeq12 3592 . . . . . . . . 9 ((𝑤 = 𝐴𝑣 = 𝐵) → ⟨𝑤, 𝑣⟩ = ⟨𝐴, 𝐵⟩)
1413eceq1d 6229 . . . . . . . 8 ((𝑤 = 𝐴𝑣 = 𝐵) → [⟨𝑤, 𝑣⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 )
1514eqeq2d 2094 . . . . . . 7 ((𝑤 = 𝐴𝑣 = 𝐵) → ([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ↔ [⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 ))
1615anbi1d 453 . . . . . 6 ((𝑤 = 𝐴𝑣 = 𝐵) → (([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ↔ ([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 )))
17 simpl 107 . . . . . . . . . . 11 ((𝑤 = 𝐴𝑣 = 𝐵) → 𝑤 = 𝐴)
1817oveq1d 5578 . . . . . . . . . 10 ((𝑤 = 𝐴𝑣 = 𝐵) → (𝑤 ·𝑜 𝐷) = (𝐴 ·𝑜 𝐷))
19 simpr 108 . . . . . . . . . . 11 ((𝑤 = 𝐴𝑣 = 𝐵) → 𝑣 = 𝐵)
2019oveq1d 5578 . . . . . . . . . 10 ((𝑤 = 𝐴𝑣 = 𝐵) → (𝑣 ·𝑜 𝐶) = (𝐵 ·𝑜 𝐶))
2118, 20oveq12d 5581 . . . . . . . . 9 ((𝑤 = 𝐴𝑣 = 𝐵) → ((𝑤 ·𝑜 𝐷) +𝑜 (𝑣 ·𝑜 𝐶)) = ((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)))
2219oveq1d 5578 . . . . . . . . 9 ((𝑤 = 𝐴𝑣 = 𝐵) → (𝑣 ·𝑜 𝐷) = (𝐵 ·𝑜 𝐷))
2321, 22opeq12d 3598 . . . . . . . 8 ((𝑤 = 𝐴𝑣 = 𝐵) → ⟨((𝑤 ·𝑜 𝐷) +𝑜 (𝑣 ·𝑜 𝐶)), (𝑣 ·𝑜 𝐷)⟩ = ⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩)
2423eceq1d 6229 . . . . . . 7 ((𝑤 = 𝐴𝑣 = 𝐵) → [⟨((𝑤 ·𝑜 𝐷) +𝑜 (𝑣 ·𝑜 𝐶)), (𝑣 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 )
2524eqeq2d 2094 . . . . . 6 ((𝑤 = 𝐴𝑣 = 𝐵) → ([⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝑤 ·𝑜 𝐷) +𝑜 (𝑣 ·𝑜 𝐶)), (𝑣 ·𝑜 𝐷)⟩] ~Q0 ↔ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ))
2616, 25anbi12d 457 . . . . 5 ((𝑤 = 𝐴𝑣 = 𝐵) → ((([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝑤 ·𝑜 𝐷) +𝑜 (𝑣 ·𝑜 𝐶)), (𝑣 ·𝑜 𝐷)⟩] ~Q0 ) ↔ (([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 )))
2726spc2egv 2695 . . . 4 ((𝐴 ∈ ω ∧ 𝐵N) → ((([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ) → ∃𝑤𝑣(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝑤 ·𝑜 𝐷) +𝑜 (𝑣 ·𝑜 𝐶)), (𝑣 ·𝑜 𝐷)⟩] ~Q0 )))
28 opeq12 3592 . . . . . . . . . 10 ((𝑢 = 𝐶𝑡 = 𝐷) → ⟨𝑢, 𝑡⟩ = ⟨𝐶, 𝐷⟩)
2928eceq1d 6229 . . . . . . . . 9 ((𝑢 = 𝐶𝑡 = 𝐷) → [⟨𝑢, 𝑡⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 )
3029eqeq2d 2094 . . . . . . . 8 ((𝑢 = 𝐶𝑡 = 𝐷) → ([⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ↔ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ))
3130anbi2d 452 . . . . . . 7 ((𝑢 = 𝐶𝑡 = 𝐷) → (([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ↔ ([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 )))
32 simpr 108 . . . . . . . . . . . 12 ((𝑢 = 𝐶𝑡 = 𝐷) → 𝑡 = 𝐷)
3332oveq2d 5579 . . . . . . . . . . 11 ((𝑢 = 𝐶𝑡 = 𝐷) → (𝑤 ·𝑜 𝑡) = (𝑤 ·𝑜 𝐷))
34 simpl 107 . . . . . . . . . . . 12 ((𝑢 = 𝐶𝑡 = 𝐷) → 𝑢 = 𝐶)
3534oveq2d 5579 . . . . . . . . . . 11 ((𝑢 = 𝐶𝑡 = 𝐷) → (𝑣 ·𝑜 𝑢) = (𝑣 ·𝑜 𝐶))
3633, 35oveq12d 5581 . . . . . . . . . 10 ((𝑢 = 𝐶𝑡 = 𝐷) → ((𝑤 ·𝑜 𝑡) +𝑜 (𝑣 ·𝑜 𝑢)) = ((𝑤 ·𝑜 𝐷) +𝑜 (𝑣 ·𝑜 𝐶)))
3732oveq2d 5579 . . . . . . . . . 10 ((𝑢 = 𝐶𝑡 = 𝐷) → (𝑣 ·𝑜 𝑡) = (𝑣 ·𝑜 𝐷))
3836, 37opeq12d 3598 . . . . . . . . 9 ((𝑢 = 𝐶𝑡 = 𝐷) → ⟨((𝑤 ·𝑜 𝑡) +𝑜 (𝑣 ·𝑜 𝑢)), (𝑣 ·𝑜 𝑡)⟩ = ⟨((𝑤 ·𝑜 𝐷) +𝑜 (𝑣 ·𝑜 𝐶)), (𝑣 ·𝑜 𝐷)⟩)
3938eceq1d 6229 . . . . . . . 8 ((𝑢 = 𝐶𝑡 = 𝐷) → [⟨((𝑤 ·𝑜 𝑡) +𝑜 (𝑣 ·𝑜 𝑢)), (𝑣 ·𝑜 𝑡)⟩] ~Q0 = [⟨((𝑤 ·𝑜 𝐷) +𝑜 (𝑣 ·𝑜 𝐶)), (𝑣 ·𝑜 𝐷)⟩] ~Q0 )
4039eqeq2d 2094 . . . . . . 7 ((𝑢 = 𝐶𝑡 = 𝐷) → ([⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝑤 ·𝑜 𝑡) +𝑜 (𝑣 ·𝑜 𝑢)), (𝑣 ·𝑜 𝑡)⟩] ~Q0 ↔ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝑤 ·𝑜 𝐷) +𝑜 (𝑣 ·𝑜 𝐶)), (𝑣 ·𝑜 𝐷)⟩] ~Q0 ))
4131, 40anbi12d 457 . . . . . 6 ((𝑢 = 𝐶𝑡 = 𝐷) → ((([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝑤 ·𝑜 𝑡) +𝑜 (𝑣 ·𝑜 𝑢)), (𝑣 ·𝑜 𝑡)⟩] ~Q0 ) ↔ (([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝑤 ·𝑜 𝐷) +𝑜 (𝑣 ·𝑜 𝐶)), (𝑣 ·𝑜 𝐷)⟩] ~Q0 )))
4241spc2egv 2695 . . . . 5 ((𝐶 ∈ ω ∧ 𝐷N) → ((([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝑤 ·𝑜 𝐷) +𝑜 (𝑣 ·𝑜 𝐶)), (𝑣 ·𝑜 𝐷)⟩] ~Q0 ) → ∃𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝑤 ·𝑜 𝑡) +𝑜 (𝑣 ·𝑜 𝑢)), (𝑣 ·𝑜 𝑡)⟩] ~Q0 )))
43422eximdv 1805 . . . 4 ((𝐶 ∈ ω ∧ 𝐷N) → (∃𝑤𝑣(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝑤 ·𝑜 𝐷) +𝑜 (𝑣 ·𝑜 𝐶)), (𝑣 ·𝑜 𝐷)⟩] ~Q0 ) → ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝑤 ·𝑜 𝑡) +𝑜 (𝑣 ·𝑜 𝑢)), (𝑣 ·𝑜 𝑡)⟩] ~Q0 )))
4427, 43sylan9 401 . . 3 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ((([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝐴, 𝐵⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝐶, 𝐷⟩] ~Q0 ) ∧ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ) → ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝑤 ·𝑜 𝑡) +𝑜 (𝑣 ·𝑜 𝑢)), (𝑣 ·𝑜 𝑡)⟩] ~Q0 )))
4511, 12, 44mp2ani 423 . 2 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝑤 ·𝑜 𝑡) +𝑜 (𝑣 ·𝑜 𝑢)), (𝑣 ·𝑜 𝑡)⟩] ~Q0 ))
46 ecexg 6197 . . . 4 ( ~Q0 ∈ V → [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ∈ V)
472, 46ax-mp 7 . . 3 [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ∈ V
48 simp1 939 . . . . . . . 8 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ) → 𝑥 = [⟨𝐴, 𝐵⟩] ~Q0 )
4948eqeq1d 2091 . . . . . . 7 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ) → (𝑥 = [⟨𝑤, 𝑣⟩] ~Q0 ↔ [⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ))
50 simp2 940 . . . . . . . 8 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ) → 𝑦 = [⟨𝐶, 𝐷⟩] ~Q0 )
5150eqeq1d 2091 . . . . . . 7 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ) → (𝑦 = [⟨𝑢, 𝑡⟩] ~Q0 ↔ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ))
5249, 51anbi12d 457 . . . . . 6 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ) → ((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑡⟩] ~Q0 ) ↔ ([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 )))
53 simp3 941 . . . . . . 7 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ) → 𝑧 = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 )
5453eqeq1d 2091 . . . . . 6 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ) → (𝑧 = [⟨((𝑤 ·𝑜 𝑡) +𝑜 (𝑣 ·𝑜 𝑢)), (𝑣 ·𝑜 𝑡)⟩] ~Q0 ↔ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝑤 ·𝑜 𝑡) +𝑜 (𝑣 ·𝑜 𝑢)), (𝑣 ·𝑜 𝑡)⟩] ~Q0 ))
5552, 54anbi12d 457 . . . . 5 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ) → (((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·𝑜 𝑡) +𝑜 (𝑣 ·𝑜 𝑢)), (𝑣 ·𝑜 𝑡)⟩] ~Q0 ) ↔ (([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝑤 ·𝑜 𝑡) +𝑜 (𝑣 ·𝑜 𝑢)), (𝑣 ·𝑜 𝑡)⟩] ~Q0 )))
56554exbidv 1793 . . . 4 ((𝑥 = [⟨𝐴, 𝐵⟩] ~Q0𝑦 = [⟨𝐶, 𝐷⟩] ~Q0𝑧 = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ) → (∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·𝑜 𝑡) +𝑜 (𝑣 ·𝑜 𝑢)), (𝑣 ·𝑜 𝑡)⟩] ~Q0 ) ↔ ∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝑤 ·𝑜 𝑡) +𝑜 (𝑣 ·𝑜 𝑢)), (𝑣 ·𝑜 𝑡)⟩] ~Q0 )))
57 addnq0mo 6734 . . . 4 ((𝑥 ∈ ((ω × N) / ~Q0 ) ∧ 𝑦 ∈ ((ω × N) / ~Q0 )) → ∃*𝑧𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·𝑜 𝑡) +𝑜 (𝑣 ·𝑜 𝑢)), (𝑣 ·𝑜 𝑡)⟩] ~Q0 ))
58 dfplq0qs 6717 . . . 4 +Q0 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ ((ω × N) / ~Q0 ) ∧ 𝑦 ∈ ((ω × N) / ~Q0 )) ∧ ∃𝑤𝑣𝑢𝑡((𝑥 = [⟨𝑤, 𝑣⟩] ~Q0𝑦 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ 𝑧 = [⟨((𝑤 ·𝑜 𝑡) +𝑜 (𝑣 ·𝑜 𝑢)), (𝑣 ·𝑜 𝑡)⟩] ~Q0 ))}
5956, 57, 58ovig 5673 . . 3 (([⟨𝐴, 𝐵⟩] ~Q0 ∈ ((ω × N) / ~Q0 ) ∧ [⟨𝐶, 𝐷⟩] ~Q0 ∈ ((ω × N) / ~Q0 ) ∧ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ∈ V) → (∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝑤 ·𝑜 𝑡) +𝑜 (𝑣 ·𝑜 𝑢)), (𝑣 ·𝑜 𝑡)⟩] ~Q0 ) → ([⟨𝐴, 𝐵⟩] ~Q0 +Q0 [⟨𝐶, 𝐷⟩] ~Q0 ) = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ))
6047, 59mp3an3 1258 . 2 (([⟨𝐴, 𝐵⟩] ~Q0 ∈ ((ω × N) / ~Q0 ) ∧ [⟨𝐶, 𝐷⟩] ~Q0 ∈ ((ω × N) / ~Q0 )) → (∃𝑤𝑣𝑢𝑡(([⟨𝐴, 𝐵⟩] ~Q0 = [⟨𝑤, 𝑣⟩] ~Q0 ∧ [⟨𝐶, 𝐷⟩] ~Q0 = [⟨𝑢, 𝑡⟩] ~Q0 ) ∧ [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 = [⟨((𝑤 ·𝑜 𝑡) +𝑜 (𝑣 ·𝑜 𝑢)), (𝑣 ·𝑜 𝑡)⟩] ~Q0 ) → ([⟨𝐴, 𝐵⟩] ~Q0 +Q0 [⟨𝐶, 𝐷⟩] ~Q0 ) = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 ))
618, 45, 60sylc 61 1 (((𝐴 ∈ ω ∧ 𝐵N) ∧ (𝐶 ∈ ω ∧ 𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q0 +Q0 [⟨𝐶, 𝐷⟩] ~Q0 ) = [⟨((𝐴 ·𝑜 𝐷) +𝑜 (𝐵 ·𝑜 𝐶)), (𝐵 ·𝑜 𝐷)⟩] ~Q0 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 920   = wceq 1285  wex 1422  wcel 1434  Vcvv 2609  cop 3419  ωcom 4359   × cxp 4389  (class class class)co 5563   +𝑜 coa 6082   ·𝑜 comu 6083  [cec 6191   / cqs 6192  Ncnpi 6559   ~Q0 ceq0 6573   +Q0 cplq0 6576
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-iinf 4357
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2611  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-id 4076  df-iord 4149  df-on 4151  df-suc 4154  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1st 5818  df-2nd 5819  df-recs 5974  df-irdg 6039  df-oadd 6089  df-omul 6090  df-er 6193  df-ec 6195  df-qs 6199  df-ni 6591  df-mi 6593  df-enq0 6711  df-nq0 6712  df-plq0 6714
This theorem is referenced by:  addclnq0  6738  nqpnq0nq  6740  nqnq0a  6741  nq0a0  6744  nnanq0  6745  distrnq0  6746  addassnq0  6749
  Copyright terms: Public domain W3C validator