Step | Hyp | Ref
| Expression |
1 | | prop 6458 |
. . . . . 6
⊢ (A ∈
P → 〈(1st ‘A), (2nd ‘A)〉 ∈
P) |
2 | | addnqprllem 6510 |
. . . . . 6
⊢
(((〈(1st ‘A),
(2nd ‘A)〉 ∈ P ∧ 𝐺 ∈
(1st ‘A)) ∧ 𝑋 ∈
Q) → (𝑋
<Q (𝐺 +Q 𝐻) → ((𝑋 ·Q
(*Q‘(𝐺 +Q 𝐻)))
·Q 𝐺) ∈
(1st ‘A))) |
3 | 1, 2 | sylanl1 382 |
. . . . 5
⊢
(((A ∈ P ∧ 𝐺 ∈
(1st ‘A)) ∧ 𝑋 ∈
Q) → (𝑋
<Q (𝐺 +Q 𝐻) → ((𝑋 ·Q
(*Q‘(𝐺 +Q 𝐻)))
·Q 𝐺) ∈
(1st ‘A))) |
4 | 3 | adantlr 446 |
. . . 4
⊢
((((A ∈ P ∧ 𝐺 ∈
(1st ‘A)) ∧ (B ∈ P ∧ 𝐻 ∈
(1st ‘B))) ∧ 𝑋 ∈
Q) → (𝑋
<Q (𝐺 +Q 𝐻) → ((𝑋 ·Q
(*Q‘(𝐺 +Q 𝐻)))
·Q 𝐺) ∈
(1st ‘A))) |
5 | | prop 6458 |
. . . . . 6
⊢ (B ∈
P → 〈(1st ‘B), (2nd ‘B)〉 ∈
P) |
6 | | addnqprllem 6510 |
. . . . . 6
⊢
(((〈(1st ‘B),
(2nd ‘B)〉 ∈ P ∧ 𝐻 ∈
(1st ‘B)) ∧ 𝑋 ∈
Q) → (𝑋
<Q (𝐺 +Q 𝐻) → ((𝑋 ·Q
(*Q‘(𝐺 +Q 𝐻)))
·Q 𝐻) ∈
(1st ‘B))) |
7 | 5, 6 | sylanl1 382 |
. . . . 5
⊢
(((B ∈ P ∧ 𝐻 ∈
(1st ‘B)) ∧ 𝑋 ∈
Q) → (𝑋
<Q (𝐺 +Q 𝐻) → ((𝑋 ·Q
(*Q‘(𝐺 +Q 𝐻)))
·Q 𝐻) ∈
(1st ‘B))) |
8 | 7 | adantll 445 |
. . . 4
⊢
((((A ∈ P ∧ 𝐺 ∈
(1st ‘A)) ∧ (B ∈ P ∧ 𝐻 ∈
(1st ‘B))) ∧ 𝑋 ∈
Q) → (𝑋
<Q (𝐺 +Q 𝐻) → ((𝑋 ·Q
(*Q‘(𝐺 +Q 𝐻)))
·Q 𝐻) ∈
(1st ‘B))) |
9 | 4, 8 | jcad 291 |
. . 3
⊢
((((A ∈ P ∧ 𝐺 ∈
(1st ‘A)) ∧ (B ∈ P ∧ 𝐻 ∈
(1st ‘B))) ∧ 𝑋 ∈
Q) → (𝑋
<Q (𝐺 +Q 𝐻) → (((𝑋 ·Q
(*Q‘(𝐺 +Q 𝐻)))
·Q 𝐺) ∈
(1st ‘A) ∧ ((𝑋 ·Q
(*Q‘(𝐺 +Q 𝐻)))
·Q 𝐻) ∈
(1st ‘B)))) |
10 | | simpl 102 |
. . . 4
⊢
((((A ∈ P ∧ 𝐺 ∈
(1st ‘A)) ∧ (B ∈ P ∧ 𝐻 ∈
(1st ‘B))) ∧ 𝑋 ∈
Q) → ((A ∈ P ∧ 𝐺 ∈
(1st ‘A)) ∧ (B ∈ P ∧ 𝐻 ∈
(1st ‘B)))) |
11 | | simpl 102 |
. . . . 5
⊢
((A ∈ P ∧ 𝐺 ∈
(1st ‘A)) → A ∈
P) |
12 | | simpl 102 |
. . . . 5
⊢
((B ∈ P ∧ 𝐻 ∈
(1st ‘B)) → B ∈
P) |
13 | 11, 12 | anim12i 321 |
. . . 4
⊢
(((A ∈ P ∧ 𝐺 ∈
(1st ‘A)) ∧ (B ∈ P ∧ 𝐻 ∈
(1st ‘B))) →
(A ∈
P ∧ B ∈
P)) |
14 | | df-iplp 6451 |
. . . . 5
⊢
+P = (x ∈ P, y ∈
P ↦ 〈{𝑞 ∈
Q ∣ ∃𝑟 ∈
Q ∃𝑠 ∈
Q (𝑟 ∈ (1st ‘x) ∧ 𝑠 ∈ (1st ‘y) ∧ 𝑞 = (𝑟 +Q 𝑠))}, {𝑞 ∈
Q ∣ ∃𝑟 ∈
Q ∃𝑠 ∈
Q (𝑟 ∈ (2nd ‘x) ∧ 𝑠 ∈ (2nd ‘y) ∧ 𝑞 = (𝑟 +Q 𝑠))}〉) |
15 | | addclnq 6359 |
. . . . 5
⊢ ((𝑟 ∈ Q ∧ 𝑠
∈ Q) → (𝑟 +Q 𝑠) ∈
Q) |
16 | 14, 15 | genpprecll 6497 |
. . . 4
⊢
((A ∈ P ∧ B ∈ P) → ((((𝑋 ·Q
(*Q‘(𝐺 +Q 𝐻)))
·Q 𝐺) ∈
(1st ‘A) ∧ ((𝑋 ·Q
(*Q‘(𝐺 +Q 𝐻)))
·Q 𝐻) ∈
(1st ‘B)) → (((𝑋
·Q (*Q‘(𝐺 +Q
𝐻)))
·Q 𝐺) +Q ((𝑋
·Q (*Q‘(𝐺 +Q
𝐻)))
·Q 𝐻)) ∈
(1st ‘(A
+P B)))) |
17 | 10, 13, 16 | 3syl 17 |
. . 3
⊢
((((A ∈ P ∧ 𝐺 ∈
(1st ‘A)) ∧ (B ∈ P ∧ 𝐻 ∈
(1st ‘B))) ∧ 𝑋 ∈
Q) → ((((𝑋 ·Q
(*Q‘(𝐺 +Q 𝐻)))
·Q 𝐺) ∈
(1st ‘A) ∧ ((𝑋 ·Q
(*Q‘(𝐺 +Q 𝐻)))
·Q 𝐻) ∈
(1st ‘B)) → (((𝑋
·Q (*Q‘(𝐺 +Q
𝐻)))
·Q 𝐺) +Q ((𝑋
·Q (*Q‘(𝐺 +Q
𝐻)))
·Q 𝐻)) ∈
(1st ‘(A
+P B)))) |
18 | 9, 17 | syld 40 |
. 2
⊢
((((A ∈ P ∧ 𝐺 ∈
(1st ‘A)) ∧ (B ∈ P ∧ 𝐻 ∈
(1st ‘B))) ∧ 𝑋 ∈
Q) → (𝑋
<Q (𝐺 +Q 𝐻) → (((𝑋 ·Q
(*Q‘(𝐺 +Q 𝐻)))
·Q 𝐺) +Q ((𝑋
·Q (*Q‘(𝐺 +Q
𝐻)))
·Q 𝐻)) ∈
(1st ‘(A
+P B)))) |
19 | | simpr 103 |
. . . . 5
⊢
((((A ∈ P ∧ 𝐺 ∈
(1st ‘A)) ∧ (B ∈ P ∧ 𝐻 ∈
(1st ‘B))) ∧ 𝑋 ∈
Q) → 𝑋
∈ Q) |
20 | | elprnql 6464 |
. . . . . . . . 9
⊢
((〈(1st ‘A),
(2nd ‘A)〉 ∈ P ∧ 𝐺 ∈
(1st ‘A)) → 𝐺 ∈ Q) |
21 | 1, 20 | sylan 267 |
. . . . . . . 8
⊢
((A ∈ P ∧ 𝐺 ∈
(1st ‘A)) → 𝐺 ∈ Q) |
22 | 21 | ad2antrr 457 |
. . . . . . 7
⊢
((((A ∈ P ∧ 𝐺 ∈
(1st ‘A)) ∧ (B ∈ P ∧ 𝐻 ∈
(1st ‘B))) ∧ 𝑋 ∈
Q) → 𝐺
∈ Q) |
23 | | elprnql 6464 |
. . . . . . . . 9
⊢
((〈(1st ‘B),
(2nd ‘B)〉 ∈ P ∧ 𝐻 ∈
(1st ‘B)) → 𝐻 ∈ Q) |
24 | 5, 23 | sylan 267 |
. . . . . . . 8
⊢
((B ∈ P ∧ 𝐻 ∈
(1st ‘B)) → 𝐻 ∈ Q) |
25 | 24 | ad2antlr 458 |
. . . . . . 7
⊢
((((A ∈ P ∧ 𝐺 ∈
(1st ‘A)) ∧ (B ∈ P ∧ 𝐻 ∈
(1st ‘B))) ∧ 𝑋 ∈
Q) → 𝐻
∈ Q) |
26 | | addclnq 6359 |
. . . . . . 7
⊢ ((𝐺 ∈ Q ∧ 𝐻 ∈
Q) → (𝐺
+Q 𝐻) ∈
Q) |
27 | 22, 25, 26 | syl2anc 391 |
. . . . . 6
⊢
((((A ∈ P ∧ 𝐺 ∈
(1st ‘A)) ∧ (B ∈ P ∧ 𝐻 ∈
(1st ‘B))) ∧ 𝑋 ∈
Q) → (𝐺
+Q 𝐻) ∈
Q) |
28 | | recclnq 6376 |
. . . . . 6
⊢ ((𝐺 +Q
𝐻) ∈ Q →
(*Q‘(𝐺 +Q 𝐻)) ∈ Q) |
29 | 27, 28 | syl 14 |
. . . . 5
⊢
((((A ∈ P ∧ 𝐺 ∈
(1st ‘A)) ∧ (B ∈ P ∧ 𝐻 ∈
(1st ‘B))) ∧ 𝑋 ∈
Q) → (*Q‘(𝐺 +Q 𝐻)) ∈ Q) |
30 | | mulassnqg 6368 |
. . . . 5
⊢ ((𝑋 ∈ Q ∧ (*Q‘(𝐺 +Q
𝐻)) ∈ Q ∧ (𝐺 +Q 𝐻) ∈ Q) → ((𝑋 ·Q
(*Q‘(𝐺 +Q 𝐻)))
·Q (𝐺 +Q 𝐻)) = (𝑋 ·Q
((*Q‘(𝐺 +Q 𝐻))
·Q (𝐺 +Q 𝐻)))) |
31 | 19, 29, 27, 30 | syl3anc 1134 |
. . . 4
⊢
((((A ∈ P ∧ 𝐺 ∈
(1st ‘A)) ∧ (B ∈ P ∧ 𝐻 ∈
(1st ‘B))) ∧ 𝑋 ∈
Q) → ((𝑋
·Q (*Q‘(𝐺 +Q
𝐻)))
·Q (𝐺 +Q 𝐻)) = (𝑋 ·Q
((*Q‘(𝐺 +Q 𝐻))
·Q (𝐺 +Q 𝐻)))) |
32 | | mulclnq 6360 |
. . . . . 6
⊢ ((𝑋 ∈ Q ∧ (*Q‘(𝐺 +Q
𝐻)) ∈ Q) → (𝑋 ·Q
(*Q‘(𝐺 +Q 𝐻))) ∈ Q) |
33 | 19, 29, 32 | syl2anc 391 |
. . . . 5
⊢
((((A ∈ P ∧ 𝐺 ∈
(1st ‘A)) ∧ (B ∈ P ∧ 𝐻 ∈
(1st ‘B))) ∧ 𝑋 ∈
Q) → (𝑋
·Q (*Q‘(𝐺 +Q
𝐻))) ∈ Q) |
34 | | distrnqg 6371 |
. . . . 5
⊢ (((𝑋
·Q (*Q‘(𝐺 +Q
𝐻))) ∈ Q ∧ 𝐺 ∈
Q ∧ 𝐻 ∈
Q) → ((𝑋
·Q (*Q‘(𝐺 +Q
𝐻)))
·Q (𝐺 +Q 𝐻)) = (((𝑋 ·Q
(*Q‘(𝐺 +Q 𝐻)))
·Q 𝐺) +Q ((𝑋
·Q (*Q‘(𝐺 +Q
𝐻)))
·Q 𝐻))) |
35 | 33, 22, 25, 34 | syl3anc 1134 |
. . . 4
⊢
((((A ∈ P ∧ 𝐺 ∈
(1st ‘A)) ∧ (B ∈ P ∧ 𝐻 ∈
(1st ‘B))) ∧ 𝑋 ∈
Q) → ((𝑋
·Q (*Q‘(𝐺 +Q
𝐻)))
·Q (𝐺 +Q 𝐻)) = (((𝑋 ·Q
(*Q‘(𝐺 +Q 𝐻)))
·Q 𝐺) +Q ((𝑋
·Q (*Q‘(𝐺 +Q
𝐻)))
·Q 𝐻))) |
36 | | mulcomnqg 6367 |
. . . . . . . 8
⊢
(((*Q‘(𝐺 +Q 𝐻)) ∈ Q ∧ (𝐺 +Q 𝐻) ∈ Q) →
((*Q‘(𝐺 +Q 𝐻))
·Q (𝐺 +Q 𝐻)) = ((𝐺 +Q 𝐻)
·Q (*Q‘(𝐺 +Q
𝐻)))) |
37 | 29, 27, 36 | syl2anc 391 |
. . . . . . 7
⊢
((((A ∈ P ∧ 𝐺 ∈
(1st ‘A)) ∧ (B ∈ P ∧ 𝐻 ∈
(1st ‘B))) ∧ 𝑋 ∈
Q) → ((*Q‘(𝐺 +Q 𝐻))
·Q (𝐺 +Q 𝐻)) = ((𝐺 +Q 𝐻)
·Q (*Q‘(𝐺 +Q
𝐻)))) |
38 | | recidnq 6377 |
. . . . . . . 8
⊢ ((𝐺 +Q
𝐻) ∈ Q → ((𝐺 +Q 𝐻)
·Q (*Q‘(𝐺 +Q
𝐻))) =
1Q) |
39 | 27, 38 | syl 14 |
. . . . . . 7
⊢
((((A ∈ P ∧ 𝐺 ∈
(1st ‘A)) ∧ (B ∈ P ∧ 𝐻 ∈
(1st ‘B))) ∧ 𝑋 ∈
Q) → ((𝐺
+Q 𝐻) ·Q
(*Q‘(𝐺 +Q 𝐻))) =
1Q) |
40 | 37, 39 | eqtrd 2069 |
. . . . . 6
⊢
((((A ∈ P ∧ 𝐺 ∈
(1st ‘A)) ∧ (B ∈ P ∧ 𝐻 ∈
(1st ‘B))) ∧ 𝑋 ∈
Q) → ((*Q‘(𝐺 +Q 𝐻))
·Q (𝐺 +Q 𝐻)) =
1Q) |
41 | 40 | oveq2d 5471 |
. . . . 5
⊢
((((A ∈ P ∧ 𝐺 ∈
(1st ‘A)) ∧ (B ∈ P ∧ 𝐻 ∈
(1st ‘B))) ∧ 𝑋 ∈
Q) → (𝑋
·Q ((*Q‘(𝐺 +Q
𝐻))
·Q (𝐺 +Q 𝐻))) = (𝑋 ·Q
1Q)) |
42 | | mulidnq 6373 |
. . . . . 6
⊢ (𝑋 ∈ Q → (𝑋 ·Q
1Q) = 𝑋) |
43 | 42 | adantl 262 |
. . . . 5
⊢
((((A ∈ P ∧ 𝐺 ∈
(1st ‘A)) ∧ (B ∈ P ∧ 𝐻 ∈
(1st ‘B))) ∧ 𝑋 ∈
Q) → (𝑋
·Q 1Q) = 𝑋) |
44 | 41, 43 | eqtrd 2069 |
. . . 4
⊢
((((A ∈ P ∧ 𝐺 ∈
(1st ‘A)) ∧ (B ∈ P ∧ 𝐻 ∈
(1st ‘B))) ∧ 𝑋 ∈
Q) → (𝑋
·Q ((*Q‘(𝐺 +Q
𝐻))
·Q (𝐺 +Q 𝐻))) = 𝑋) |
45 | 31, 35, 44 | 3eqtr3d 2077 |
. . 3
⊢
((((A ∈ P ∧ 𝐺 ∈
(1st ‘A)) ∧ (B ∈ P ∧ 𝐻 ∈
(1st ‘B))) ∧ 𝑋 ∈
Q) → (((𝑋 ·Q
(*Q‘(𝐺 +Q 𝐻)))
·Q 𝐺) +Q ((𝑋
·Q (*Q‘(𝐺 +Q
𝐻)))
·Q 𝐻)) = 𝑋) |
46 | 45 | eleq1d 2103 |
. 2
⊢
((((A ∈ P ∧ 𝐺 ∈
(1st ‘A)) ∧ (B ∈ P ∧ 𝐻 ∈
(1st ‘B))) ∧ 𝑋 ∈
Q) → ((((𝑋 ·Q
(*Q‘(𝐺 +Q 𝐻)))
·Q 𝐺) +Q ((𝑋
·Q (*Q‘(𝐺 +Q
𝐻)))
·Q 𝐻)) ∈
(1st ‘(A
+P B)) ↔
𝑋 ∈ (1st ‘(A +P B)))) |
47 | 18, 46 | sylibd 138 |
1
⊢
((((A ∈ P ∧ 𝐺 ∈
(1st ‘A)) ∧ (B ∈ P ∧ 𝐻 ∈
(1st ‘B))) ∧ 𝑋 ∈
Q) → (𝑋
<Q (𝐺 +Q 𝐻) → 𝑋 ∈
(1st ‘(A
+P B)))) |