![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addpinq1 | GIF version |
Description: Addition of one to the numerator of a fraction whose denominator is one. (Contributed by Jim Kingdon, 26-Apr-2020.) |
Ref | Expression |
---|---|
addpinq1 | ⊢ (𝐴 ∈ N → [〈(𝐴 +N 1𝑜), 1𝑜〉] ~Q = ([〈𝐴, 1𝑜〉] ~Q +Q 1Q)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-1nqqs 6680 | . . . . 5 ⊢ 1Q = [〈1𝑜, 1𝑜〉] ~Q | |
2 | 1 | oveq2i 5576 | . . . 4 ⊢ ([〈𝐴, 1𝑜〉] ~Q +Q 1Q) = ([〈𝐴, 1𝑜〉] ~Q +Q [〈1𝑜, 1𝑜〉] ~Q ) |
3 | 1pi 6644 | . . . . 5 ⊢ 1𝑜 ∈ N | |
4 | addpipqqs 6699 | . . . . . 6 ⊢ (((𝐴 ∈ N ∧ 1𝑜 ∈ N) ∧ (1𝑜 ∈ N ∧ 1𝑜 ∈ N)) → ([〈𝐴, 1𝑜〉] ~Q +Q [〈1𝑜, 1𝑜〉] ~Q ) = [〈((𝐴 ·N 1𝑜) +N (1𝑜 ·N 1𝑜)), (1𝑜 ·N 1𝑜)〉] ~Q ) | |
5 | 3, 3, 4 | mpanr12 430 | . . . . 5 ⊢ ((𝐴 ∈ N ∧ 1𝑜 ∈ N) → ([〈𝐴, 1𝑜〉] ~Q +Q [〈1𝑜, 1𝑜〉] ~Q ) = [〈((𝐴 ·N 1𝑜) +N (1𝑜 ·N 1𝑜)), (1𝑜 ·N 1𝑜)〉] ~Q ) |
6 | 3, 5 | mpan2 416 | . . . 4 ⊢ (𝐴 ∈ N → ([〈𝐴, 1𝑜〉] ~Q +Q [〈1𝑜, 1𝑜〉] ~Q ) = [〈((𝐴 ·N 1𝑜) +N (1𝑜 ·N 1𝑜)), (1𝑜 ·N 1𝑜)〉] ~Q ) |
7 | 2, 6 | syl5eq 2127 | . . 3 ⊢ (𝐴 ∈ N → ([〈𝐴, 1𝑜〉] ~Q +Q 1Q) = [〈((𝐴 ·N 1𝑜) +N (1𝑜 ·N 1𝑜)), (1𝑜 ·N 1𝑜)〉] ~Q ) |
8 | mulidpi 6647 | . . . . . . 7 ⊢ (1𝑜 ∈ N → (1𝑜 ·N 1𝑜) = 1𝑜) | |
9 | 3, 8 | ax-mp 7 | . . . . . 6 ⊢ (1𝑜 ·N 1𝑜) = 1𝑜 |
10 | 9 | oveq2i 5576 | . . . . 5 ⊢ ((𝐴 ·N 1𝑜) +N (1𝑜 ·N 1𝑜)) = ((𝐴 ·N 1𝑜) +N 1𝑜) |
11 | 10, 9 | opeq12i 3596 | . . . 4 ⊢ 〈((𝐴 ·N 1𝑜) +N (1𝑜 ·N 1𝑜)), (1𝑜 ·N 1𝑜)〉 = 〈((𝐴 ·N 1𝑜) +N 1𝑜), 1𝑜〉 |
12 | eceq1 6230 | . . . 4 ⊢ (〈((𝐴 ·N 1𝑜) +N (1𝑜 ·N 1𝑜)), (1𝑜 ·N 1𝑜)〉 = 〈((𝐴 ·N 1𝑜) +N 1𝑜), 1𝑜〉 → [〈((𝐴 ·N 1𝑜) +N (1𝑜 ·N 1𝑜)), (1𝑜 ·N 1𝑜)〉] ~Q = [〈((𝐴 ·N 1𝑜) +N 1𝑜), 1𝑜〉] ~Q ) | |
13 | 11, 12 | ax-mp 7 | . . 3 ⊢ [〈((𝐴 ·N 1𝑜) +N (1𝑜 ·N 1𝑜)), (1𝑜 ·N 1𝑜)〉] ~Q = [〈((𝐴 ·N 1𝑜) +N 1𝑜), 1𝑜〉] ~Q |
14 | 7, 13 | syl6eq 2131 | . 2 ⊢ (𝐴 ∈ N → ([〈𝐴, 1𝑜〉] ~Q +Q 1Q) = [〈((𝐴 ·N 1𝑜) +N 1𝑜), 1𝑜〉] ~Q ) |
15 | mulidpi 6647 | . . . . 5 ⊢ (𝐴 ∈ N → (𝐴 ·N 1𝑜) = 𝐴) | |
16 | 15 | oveq1d 5580 | . . . 4 ⊢ (𝐴 ∈ N → ((𝐴 ·N 1𝑜) +N 1𝑜) = (𝐴 +N 1𝑜)) |
17 | 16 | opeq1d 3597 | . . 3 ⊢ (𝐴 ∈ N → 〈((𝐴 ·N 1𝑜) +N 1𝑜), 1𝑜〉 = 〈(𝐴 +N 1𝑜), 1𝑜〉) |
18 | 17 | eceq1d 6231 | . 2 ⊢ (𝐴 ∈ N → [〈((𝐴 ·N 1𝑜) +N 1𝑜), 1𝑜〉] ~Q = [〈(𝐴 +N 1𝑜), 1𝑜〉] ~Q ) |
19 | 14, 18 | eqtr2d 2116 | 1 ⊢ (𝐴 ∈ N → [〈(𝐴 +N 1𝑜), 1𝑜〉] ~Q = ([〈𝐴, 1𝑜〉] ~Q +Q 1Q)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1285 ∈ wcel 1434 〈cop 3420 (class class class)co 5565 1𝑜c1o 6080 [cec 6193 Ncnpi 6601 +N cpli 6602 ·N cmi 6603 ~Q ceq 6608 1Qc1q 6610 +Q cplq 6611 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3914 ax-sep 3917 ax-nul 3925 ax-pow 3969 ax-pr 3993 ax-un 4217 ax-setind 4309 ax-iinf 4358 |
This theorem depends on definitions: df-bi 115 df-dc 777 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-ral 2358 df-rex 2359 df-reu 2360 df-rab 2362 df-v 2613 df-sbc 2826 df-csb 2919 df-dif 2985 df-un 2987 df-in 2989 df-ss 2996 df-nul 3269 df-pw 3403 df-sn 3423 df-pr 3424 df-op 3426 df-uni 3623 df-int 3658 df-iun 3701 df-br 3807 df-opab 3861 df-mpt 3862 df-tr 3897 df-id 4077 df-iord 4150 df-on 4152 df-suc 4155 df-iom 4361 df-xp 4398 df-rel 4399 df-cnv 4400 df-co 4401 df-dm 4402 df-rn 4403 df-res 4404 df-ima 4405 df-iota 4918 df-fun 4955 df-fn 4956 df-f 4957 df-f1 4958 df-fo 4959 df-f1o 4960 df-fv 4961 df-ov 5568 df-oprab 5569 df-mpt2 5570 df-1st 5820 df-2nd 5821 df-recs 5976 df-irdg 6041 df-1o 6087 df-oadd 6091 df-omul 6092 df-er 6195 df-ec 6197 df-qs 6201 df-ni 6633 df-pli 6634 df-mi 6635 df-plpq 6673 df-enq 6676 df-nqqs 6677 df-plqqs 6678 df-1nqqs 6680 |
This theorem is referenced by: pitonnlem2 7154 |
Copyright terms: Public domain | W3C validator |