Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  addpipqqs GIF version

 Description: Addition of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.)
Assertion
Ref Expression
addpipqqs (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q +Q [⟨𝐶, 𝐷⟩] ~Q ) = [⟨((𝐴 ·N 𝐷) +N (𝐵 ·N 𝐶)), (𝐵 ·N 𝐷)⟩] ~Q )

Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑡 𝑠 𝑓 𝑔 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addpipqqslem 6621 . 2 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ⟨((𝐴 ·N 𝐷) +N (𝐵 ·N 𝐶)), (𝐵 ·N 𝐷)⟩ ∈ (N × N))
2 addpipqqslem 6621 . 2 (((𝑎N𝑏N) ∧ (𝑔NN)) → ⟨((𝑎 ·N ) +N (𝑏 ·N 𝑔)), (𝑏 ·N )⟩ ∈ (N × N))
3 addpipqqslem 6621 . 2 (((𝑐N𝑑N) ∧ (𝑡N𝑠N)) → ⟨((𝑐 ·N 𝑠) +N (𝑑 ·N 𝑡)), (𝑑 ·N 𝑠)⟩ ∈ (N × N))
4 enqex 6612 . 2 ~Q ∈ V
5 enqer 6610 . 2 ~Q Er (N × N)
6 df-enq 6599 . 2 ~Q = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑧𝑤𝑣𝑢((𝑥 = ⟨𝑧, 𝑤⟩ ∧ 𝑦 = ⟨𝑣, 𝑢⟩) ∧ (𝑧 ·N 𝑢) = (𝑤 ·N 𝑣)))}
7 oveq12 5552 . . . 4 ((𝑧 = 𝑎𝑢 = 𝑑) → (𝑧 ·N 𝑢) = (𝑎 ·N 𝑑))
8 oveq12 5552 . . . 4 ((𝑤 = 𝑏𝑣 = 𝑐) → (𝑤 ·N 𝑣) = (𝑏 ·N 𝑐))
97, 8eqeqan12d 2097 . . 3 (((𝑧 = 𝑎𝑢 = 𝑑) ∧ (𝑤 = 𝑏𝑣 = 𝑐)) → ((𝑧 ·N 𝑢) = (𝑤 ·N 𝑣) ↔ (𝑎 ·N 𝑑) = (𝑏 ·N 𝑐)))
109an42s 554 . 2 (((𝑧 = 𝑎𝑤 = 𝑏) ∧ (𝑣 = 𝑐𝑢 = 𝑑)) → ((𝑧 ·N 𝑢) = (𝑤 ·N 𝑣) ↔ (𝑎 ·N 𝑑) = (𝑏 ·N 𝑐)))
11 oveq12 5552 . . . 4 ((𝑧 = 𝑔𝑢 = 𝑠) → (𝑧 ·N 𝑢) = (𝑔 ·N 𝑠))
12 oveq12 5552 . . . 4 ((𝑤 = 𝑣 = 𝑡) → (𝑤 ·N 𝑣) = ( ·N 𝑡))
1311, 12eqeqan12d 2097 . . 3 (((𝑧 = 𝑔𝑢 = 𝑠) ∧ (𝑤 = 𝑣 = 𝑡)) → ((𝑧 ·N 𝑢) = (𝑤 ·N 𝑣) ↔ (𝑔 ·N 𝑠) = ( ·N 𝑡)))
1413an42s 554 . 2 (((𝑧 = 𝑔𝑤 = ) ∧ (𝑣 = 𝑡𝑢 = 𝑠)) → ((𝑧 ·N 𝑢) = (𝑤 ·N 𝑣) ↔ (𝑔 ·N 𝑠) = ( ·N 𝑡)))
15 dfplpq2 6606 . 2 +pQ = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (N × N) ∧ 𝑦 ∈ (N × N)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = ⟨((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)), (𝑣 ·N 𝑓)⟩))}
16 oveq12 5552 . . . . 5 ((𝑤 = 𝑎𝑓 = ) → (𝑤 ·N 𝑓) = (𝑎 ·N ))
17 oveq12 5552 . . . . 5 ((𝑣 = 𝑏𝑢 = 𝑔) → (𝑣 ·N 𝑢) = (𝑏 ·N 𝑔))
1816, 17oveqan12d 5562 . . . 4 (((𝑤 = 𝑎𝑓 = ) ∧ (𝑣 = 𝑏𝑢 = 𝑔)) → ((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)) = ((𝑎 ·N ) +N (𝑏 ·N 𝑔)))
1918an42s 554 . . 3 (((𝑤 = 𝑎𝑣 = 𝑏) ∧ (𝑢 = 𝑔𝑓 = )) → ((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)) = ((𝑎 ·N ) +N (𝑏 ·N 𝑔)))
20 oveq12 5552 . . . 4 ((𝑣 = 𝑏𝑓 = ) → (𝑣 ·N 𝑓) = (𝑏 ·N ))
2120ad2ant2l 492 . . 3 (((𝑤 = 𝑎𝑣 = 𝑏) ∧ (𝑢 = 𝑔𝑓 = )) → (𝑣 ·N 𝑓) = (𝑏 ·N ))
2219, 21opeq12d 3586 . 2 (((𝑤 = 𝑎𝑣 = 𝑏) ∧ (𝑢 = 𝑔𝑓 = )) → ⟨((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)), (𝑣 ·N 𝑓)⟩ = ⟨((𝑎 ·N ) +N (𝑏 ·N 𝑔)), (𝑏 ·N )⟩)
23 oveq12 5552 . . . . 5 ((𝑤 = 𝑐𝑓 = 𝑠) → (𝑤 ·N 𝑓) = (𝑐 ·N 𝑠))
24 oveq12 5552 . . . . 5 ((𝑣 = 𝑑𝑢 = 𝑡) → (𝑣 ·N 𝑢) = (𝑑 ·N 𝑡))
2523, 24oveqan12d 5562 . . . 4 (((𝑤 = 𝑐𝑓 = 𝑠) ∧ (𝑣 = 𝑑𝑢 = 𝑡)) → ((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)) = ((𝑐 ·N 𝑠) +N (𝑑 ·N 𝑡)))
2625an42s 554 . . 3 (((𝑤 = 𝑐𝑣 = 𝑑) ∧ (𝑢 = 𝑡𝑓 = 𝑠)) → ((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)) = ((𝑐 ·N 𝑠) +N (𝑑 ·N 𝑡)))
27 oveq12 5552 . . . 4 ((𝑣 = 𝑑𝑓 = 𝑠) → (𝑣 ·N 𝑓) = (𝑑 ·N 𝑠))
2827ad2ant2l 492 . . 3 (((𝑤 = 𝑐𝑣 = 𝑑) ∧ (𝑢 = 𝑡𝑓 = 𝑠)) → (𝑣 ·N 𝑓) = (𝑑 ·N 𝑠))
2926, 28opeq12d 3586 . 2 (((𝑤 = 𝑐𝑣 = 𝑑) ∧ (𝑢 = 𝑡𝑓 = 𝑠)) → ⟨((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)), (𝑣 ·N 𝑓)⟩ = ⟨((𝑐 ·N 𝑠) +N (𝑑 ·N 𝑡)), (𝑑 ·N 𝑠)⟩)
30 oveq12 5552 . . . . 5 ((𝑤 = 𝐴𝑓 = 𝐷) → (𝑤 ·N 𝑓) = (𝐴 ·N 𝐷))
31 oveq12 5552 . . . . 5 ((𝑣 = 𝐵𝑢 = 𝐶) → (𝑣 ·N 𝑢) = (𝐵 ·N 𝐶))
3230, 31oveqan12d 5562 . . . 4 (((𝑤 = 𝐴𝑓 = 𝐷) ∧ (𝑣 = 𝐵𝑢 = 𝐶)) → ((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)) = ((𝐴 ·N 𝐷) +N (𝐵 ·N 𝐶)))
3332an42s 554 . . 3 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → ((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)) = ((𝐴 ·N 𝐷) +N (𝐵 ·N 𝐶)))
34 oveq12 5552 . . . 4 ((𝑣 = 𝐵𝑓 = 𝐷) → (𝑣 ·N 𝑓) = (𝐵 ·N 𝐷))
3534ad2ant2l 492 . . 3 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → (𝑣 ·N 𝑓) = (𝐵 ·N 𝐷))
3633, 35opeq12d 3586 . 2 (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → ⟨((𝑤 ·N 𝑓) +N (𝑣 ·N 𝑢)), (𝑣 ·N 𝑓)⟩ = ⟨((𝐴 ·N 𝐷) +N (𝐵 ·N 𝐶)), (𝐵 ·N 𝐷)⟩)
37 df-plqqs 6601 . 2 +Q = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥Q𝑦Q) ∧ ∃𝑎𝑏𝑐𝑑((𝑥 = [⟨𝑎, 𝑏⟩] ~Q𝑦 = [⟨𝑐, 𝑑⟩] ~Q ) ∧ 𝑧 = [(⟨𝑎, 𝑏⟩ +pQ𝑐, 𝑑⟩)] ~Q ))}
38 df-nqqs 6600 . 2 Q = ((N × N) / ~Q )
39 addcmpblnq 6619 . 2 ((((𝑎N𝑏N) ∧ (𝑐N𝑑N)) ∧ ((𝑔NN) ∧ (𝑡N𝑠N))) → (((𝑎 ·N 𝑑) = (𝑏 ·N 𝑐) ∧ (𝑔 ·N 𝑠) = ( ·N 𝑡)) → ⟨((𝑎 ·N ) +N (𝑏 ·N 𝑔)), (𝑏 ·N )⟩ ~Q ⟨((𝑐 ·N 𝑠) +N (𝑑 ·N 𝑡)), (𝑑 ·N 𝑠)⟩))
401, 2, 3, 4, 5, 6, 10, 14, 15, 22, 29, 36, 37, 38, 39oviec 6278 1 (((𝐴N𝐵N) ∧ (𝐶N𝐷N)) → ([⟨𝐴, 𝐵⟩] ~Q +Q [⟨𝐶, 𝐷⟩] ~Q ) = [⟨((𝐴 ·N 𝐷) +N (𝐵 ·N 𝐶)), (𝐵 ·N 𝐷)⟩] ~Q )
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 102   ↔ wb 103   = wceq 1285   ∈ wcel 1434  ⟨cop 3409  (class class class)co 5543  [cec 6170  Ncnpi 6524   +N cpli 6525   ·N cmi 6526   +pQ cplpq 6528   ~Q ceq 6531  Qcnq 6532   +Q cplq 6534 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-nul 3912  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-iinf 4337 This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-tr 3884  df-id 4056  df-iord 4129  df-on 4131  df-suc 4134  df-iom 4340  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799  df-recs 5954  df-irdg 6019  df-oadd 6069  df-omul 6070  df-er 6172  df-ec 6174  df-qs 6178  df-ni 6556  df-pli 6557  df-mi 6558  df-plpq 6596  df-enq 6599  df-nqqs 6600  df-plqqs 6601 This theorem is referenced by:  addclnq  6627  addcomnqg  6633  addassnqg  6634  distrnqg  6639  ltanqg  6652  1lt2nq  6658  ltexnqq  6660  nqnq0a  6706  addpinq1  6716
 Copyright terms: Public domain W3C validator