ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addsubass GIF version

Theorem addsubass 7437
Description: Associative-type law for addition and subtraction. (Contributed by NM, 6-Aug-2003.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
addsubass ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵𝐶)))

Proof of Theorem addsubass
StepHypRef Expression
1 simp1 939 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ ℂ)
2 subcl 7426 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐶) ∈ ℂ)
323adant1 957 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵𝐶) ∈ ℂ)
4 simp3 941 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐶 ∈ ℂ)
51, 3, 4addassd 7255 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + (𝐵𝐶)) + 𝐶) = (𝐴 + ((𝐵𝐶) + 𝐶)))
6 npcan 7436 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵𝐶) + 𝐶) = 𝐵)
763adant1 957 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵𝐶) + 𝐶) = 𝐵)
87oveq2d 5579 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + ((𝐵𝐶) + 𝐶)) = (𝐴 + 𝐵))
95, 8eqtrd 2115 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + (𝐵𝐶)) + 𝐶) = (𝐴 + 𝐵))
109oveq1d 5578 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 + (𝐵𝐶)) + 𝐶) − 𝐶) = ((𝐴 + 𝐵) − 𝐶))
111, 3addcld 7252 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + (𝐵𝐶)) ∈ ℂ)
12 pncan 7433 . . 3 (((𝐴 + (𝐵𝐶)) ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 + (𝐵𝐶)) + 𝐶) − 𝐶) = (𝐴 + (𝐵𝐶)))
1311, 4, 12syl2anc 403 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 + (𝐵𝐶)) + 𝐶) − 𝐶) = (𝐴 + (𝐵𝐶)))
1410, 13eqtr3d 2117 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 920   = wceq 1285  wcel 1434  (class class class)co 5563  cc 7093   + caddc 7098  cmin 7398
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-setind 4308  ax-resscn 7182  ax-1cn 7183  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-addcom 7190  ax-addass 7192  ax-distr 7194  ax-i2m1 7195  ax-0id 7198  ax-rnegex 7199  ax-cnre 7201
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-br 3806  df-opab 3860  df-id 4076  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-iota 4917  df-fun 4954  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-sub 7400
This theorem is referenced by:  addsub  7438  subadd23  7439  addsubeq4  7442  npncan  7448  subsub  7457  subsub3  7459  addsub4  7470  negsub  7475  addsubassi  7518  addsubassd  7558  zeo  8585  frecfzen2  9561  odd2np1  10480
  Copyright terms: Public domain W3C validator