ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  algcvgblem GIF version

Theorem algcvgblem 11657
Description: Lemma for algcvgb 11658. (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
algcvgblem ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) ↔ ((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑀 = 0 → 𝑁 = 0))))

Proof of Theorem algcvgblem
StepHypRef Expression
1 nn0z 9042 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
2 0z 9033 . . . . . . . . 9 0 ∈ ℤ
3 zdceq 9094 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑁 = 0)
41, 2, 3sylancl 409 . . . . . . . 8 (𝑁 ∈ ℕ0DECID 𝑁 = 0)
54dcned 2291 . . . . . . 7 (𝑁 ∈ ℕ0DECID 𝑁 ≠ 0)
6 imordc 867 . . . . . . 7 (DECID 𝑁 ≠ 0 → ((𝑁 ≠ 0 → 𝑁 < 𝑀) ↔ (¬ 𝑁 ≠ 0 ∨ 𝑁 < 𝑀)))
75, 6syl 14 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 ≠ 0 → 𝑁 < 𝑀) ↔ (¬ 𝑁 ≠ 0 ∨ 𝑁 < 𝑀)))
87adantl 275 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) ↔ (¬ 𝑁 ≠ 0 ∨ 𝑁 < 𝑀)))
9 nn0z 9042 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
10 zltnle 9068 . . . . . . . . . . . . . 14 ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (0 < 𝑀 ↔ ¬ 𝑀 ≤ 0))
112, 9, 10sylancr 410 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0 → (0 < 𝑀 ↔ ¬ 𝑀 ≤ 0))
1211adantr 274 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 < 𝑀 ↔ ¬ 𝑀 ≤ 0))
13 nn0le0eq0 8973 . . . . . . . . . . . . . 14 (𝑀 ∈ ℕ0 → (𝑀 ≤ 0 ↔ 𝑀 = 0))
1413notbid 641 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0 → (¬ 𝑀 ≤ 0 ↔ ¬ 𝑀 = 0))
1514adantr 274 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑀 ≤ 0 ↔ ¬ 𝑀 = 0))
1612, 15bitrd 187 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 < 𝑀 ↔ ¬ 𝑀 = 0))
17 df-ne 2286 . . . . . . . . . . 11 (𝑀 ≠ 0 ↔ ¬ 𝑀 = 0)
1816, 17syl6bbr 197 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (0 < 𝑀𝑀 ≠ 0))
1918anbi2d 459 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((¬ 𝑁 ≠ 0 ∧ 0 < 𝑀) ↔ (¬ 𝑁 ≠ 0 ∧ 𝑀 ≠ 0)))
201adantl 275 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℤ)
2120, 2, 3sylancl 409 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → DECID 𝑁 = 0)
22 nnedc 2290 . . . . . . . . . . . . 13 (DECID 𝑁 = 0 → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0))
2321, 22syl 14 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑁 ≠ 0 ↔ 𝑁 = 0))
24 breq1 3902 . . . . . . . . . . . 12 (𝑁 = 0 → (𝑁 < 𝑀 ↔ 0 < 𝑀))
2523, 24syl6bi 162 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑁 ≠ 0 → (𝑁 < 𝑀 ↔ 0 < 𝑀)))
26 bi2 129 . . . . . . . . . . 11 ((𝑁 < 𝑀 ↔ 0 < 𝑀) → (0 < 𝑀𝑁 < 𝑀))
2725, 26syl6 33 . . . . . . . . . 10 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑁 ≠ 0 → (0 < 𝑀𝑁 < 𝑀)))
2827impd 252 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((¬ 𝑁 ≠ 0 ∧ 0 < 𝑀) → 𝑁 < 𝑀))
2919, 28sylbird 169 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((¬ 𝑁 ≠ 0 ∧ 𝑀 ≠ 0) → 𝑁 < 𝑀))
3029expd 256 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (¬ 𝑁 ≠ 0 → (𝑀 ≠ 0 → 𝑁 < 𝑀)))
31 ax-1 6 . . . . . . 7 (𝑁 < 𝑀 → (𝑀 ≠ 0 → 𝑁 < 𝑀))
3230, 31jctir 311 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((¬ 𝑁 ≠ 0 → (𝑀 ≠ 0 → 𝑁 < 𝑀)) ∧ (𝑁 < 𝑀 → (𝑀 ≠ 0 → 𝑁 < 𝑀))))
33 jaob 684 . . . . . 6 (((¬ 𝑁 ≠ 0 ∨ 𝑁 < 𝑀) → (𝑀 ≠ 0 → 𝑁 < 𝑀)) ↔ ((¬ 𝑁 ≠ 0 → (𝑀 ≠ 0 → 𝑁 < 𝑀)) ∧ (𝑁 < 𝑀 → (𝑀 ≠ 0 → 𝑁 < 𝑀))))
3432, 33sylibr 133 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((¬ 𝑁 ≠ 0 ∨ 𝑁 < 𝑀) → (𝑀 ≠ 0 → 𝑁 < 𝑀)))
358, 34sylbid 149 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) → (𝑀 ≠ 0 → 𝑁 < 𝑀)))
36 nn0ge0 8970 . . . . . . . 8 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
3736adantl 275 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 0 ≤ 𝑁)
38 nn0re 8954 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
39 nn0re 8954 . . . . . . . 8 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
40 0re 7734 . . . . . . . . 9 0 ∈ ℝ
41 lelttr 7820 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((0 ≤ 𝑁𝑁 < 𝑀) → 0 < 𝑀))
4240, 41mp3an1 1287 . . . . . . . 8 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((0 ≤ 𝑁𝑁 < 𝑀) → 0 < 𝑀))
4338, 39, 42syl2anr 288 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((0 ≤ 𝑁𝑁 < 𝑀) → 0 < 𝑀))
4437, 43mpand 425 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 < 𝑀 → 0 < 𝑀))
4544, 18sylibd 148 . . . . 5 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑁 < 𝑀𝑀 ≠ 0))
4645imim2d 54 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) → (𝑁 ≠ 0 → 𝑀 ≠ 0)))
4735, 46jcad 305 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) → ((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑁 ≠ 0 → 𝑀 ≠ 0))))
48 pm3.34 343 . . 3 (((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑁 ≠ 0 → 𝑀 ≠ 0)) → (𝑁 ≠ 0 → 𝑁 < 𝑀))
4947, 48impbid1 141 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) ↔ ((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑁 ≠ 0 → 𝑀 ≠ 0))))
50 con34bdc 841 . . . . 5 (DECID 𝑁 = 0 → ((𝑀 = 0 → 𝑁 = 0) ↔ (¬ 𝑁 = 0 → ¬ 𝑀 = 0)))
5121, 50syl 14 . . . 4 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀 = 0 → 𝑁 = 0) ↔ (¬ 𝑁 = 0 → ¬ 𝑀 = 0)))
52 df-ne 2286 . . . . 5 (𝑁 ≠ 0 ↔ ¬ 𝑁 = 0)
5352, 17imbi12i 238 . . . 4 ((𝑁 ≠ 0 → 𝑀 ≠ 0) ↔ (¬ 𝑁 = 0 → ¬ 𝑀 = 0))
5451, 53syl6bbr 197 . . 3 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀 = 0 → 𝑁 = 0) ↔ (𝑁 ≠ 0 → 𝑀 ≠ 0)))
5554anbi2d 459 . 2 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑀 = 0 → 𝑁 = 0)) ↔ ((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑁 ≠ 0 → 𝑀 ≠ 0))))
5649, 55bitr4d 190 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑁 ≠ 0 → 𝑁 < 𝑀) ↔ ((𝑀 ≠ 0 → 𝑁 < 𝑀) ∧ (𝑀 = 0 → 𝑁 = 0))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 682  DECID wdc 804   = wceq 1316  wcel 1465  wne 2285   class class class wbr 3899  cr 7587  0cc0 7588   < clt 7768  cle 7769  0cn0 8945  cz 9022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-addcom 7688  ax-addass 7690  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-0id 7696  ax-rnegex 7697  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704
This theorem depends on definitions:  df-bi 116  df-stab 801  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-br 3900  df-opab 3960  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-iota 5058  df-fun 5095  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-inn 8689  df-n0 8946  df-z 9023
This theorem is referenced by:  algcvgb  11658
  Copyright terms: Public domain W3C validator