ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  amgm2 GIF version

Theorem amgm2 10858
Description: Arithmetic-geometric mean inequality for 𝑛 = 2. (Contributed by Mario Carneiro, 2-Jul-2014.)
Assertion
Ref Expression
amgm2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (√‘(𝐴 · 𝐵)) ≤ ((𝐴 + 𝐵) / 2))

Proof of Theorem amgm2
StepHypRef Expression
1 2cn 8759 . . . . . 6 2 ∈ ℂ
2 simpll 503 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐴 ∈ ℝ)
3 simprl 505 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℝ)
4 remulcl 7716 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
52, 3, 4syl2anc 408 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 · 𝐵) ∈ ℝ)
6 mulge0 8349 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))
7 resqrtcl 10769 . . . . . . . 8 (((𝐴 · 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐵)) → (√‘(𝐴 · 𝐵)) ∈ ℝ)
85, 6, 7syl2anc 408 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (√‘(𝐴 · 𝐵)) ∈ ℝ)
98recnd 7762 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (√‘(𝐴 · 𝐵)) ∈ ℂ)
10 sqmul 10323 . . . . . 6 ((2 ∈ ℂ ∧ (√‘(𝐴 · 𝐵)) ∈ ℂ) → ((2 · (√‘(𝐴 · 𝐵)))↑2) = ((2↑2) · ((√‘(𝐴 · 𝐵))↑2)))
111, 9, 10sylancr 410 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((2 · (√‘(𝐴 · 𝐵)))↑2) = ((2↑2) · ((√‘(𝐴 · 𝐵))↑2)))
12 sq2 10356 . . . . . . 7 (2↑2) = 4
1312oveq1i 5752 . . . . . 6 ((2↑2) · ((√‘(𝐴 · 𝐵))↑2)) = (4 · ((√‘(𝐴 · 𝐵))↑2))
14 resqrtth 10771 . . . . . . . 8 (((𝐴 · 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐵)) → ((√‘(𝐴 · 𝐵))↑2) = (𝐴 · 𝐵))
155, 6, 14syl2anc 408 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((√‘(𝐴 · 𝐵))↑2) = (𝐴 · 𝐵))
1615oveq2d 5758 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (4 · ((√‘(𝐴 · 𝐵))↑2)) = (4 · (𝐴 · 𝐵)))
1713, 16syl5eq 2162 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((2↑2) · ((√‘(𝐴 · 𝐵))↑2)) = (4 · (𝐴 · 𝐵)))
1811, 17eqtrd 2150 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((2 · (√‘(𝐴 · 𝐵)))↑2) = (4 · (𝐴 · 𝐵)))
192, 3resubcld 8111 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴𝐵) ∈ ℝ)
2019sqge0d 10419 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ ((𝐴𝐵)↑2))
212recnd 7762 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐴 ∈ ℂ)
223recnd 7762 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 𝐵 ∈ ℂ)
23 binom2 10371 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)))
2421, 22, 23syl2anc 408 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 + 𝐵)↑2) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)))
25 binom2sub 10373 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵)↑2) = (((𝐴↑2) − (2 · (𝐴 · 𝐵))) + (𝐵↑2)))
2621, 22, 25syl2anc 408 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴𝐵)↑2) = (((𝐴↑2) − (2 · (𝐴 · 𝐵))) + (𝐵↑2)))
2724, 26oveq12d 5760 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (((𝐴 + 𝐵)↑2) − ((𝐴𝐵)↑2)) = ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) − (((𝐴↑2) − (2 · (𝐴 · 𝐵))) + (𝐵↑2))))
282resqcld 10418 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴↑2) ∈ ℝ)
29 2re 8758 . . . . . . . . . . . 12 2 ∈ ℝ
30 remulcl 7716 . . . . . . . . . . . 12 ((2 ∈ ℝ ∧ (𝐴 · 𝐵) ∈ ℝ) → (2 · (𝐴 · 𝐵)) ∈ ℝ)
3129, 5, 30sylancr 410 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (2 · (𝐴 · 𝐵)) ∈ ℝ)
3228, 31readdcld 7763 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) + (2 · (𝐴 · 𝐵))) ∈ ℝ)
3332recnd 7762 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) + (2 · (𝐴 · 𝐵))) ∈ ℂ)
3428, 31resubcld 8111 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) − (2 · (𝐴 · 𝐵))) ∈ ℝ)
3534recnd 7762 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴↑2) − (2 · (𝐴 · 𝐵))) ∈ ℂ)
363resqcld 10418 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵↑2) ∈ ℝ)
3736recnd 7762 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐵↑2) ∈ ℂ)
3833, 35, 37pnpcan2d 8079 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((((𝐴↑2) + (2 · (𝐴 · 𝐵))) + (𝐵↑2)) − (((𝐴↑2) − (2 · (𝐴 · 𝐵))) + (𝐵↑2))) = (((𝐴↑2) + (2 · (𝐴 · 𝐵))) − ((𝐴↑2) − (2 · (𝐴 · 𝐵)))))
3931recnd 7762 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (2 · (𝐴 · 𝐵)) ∈ ℂ)
40392timesd 8930 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (2 · (2 · (𝐴 · 𝐵))) = ((2 · (𝐴 · 𝐵)) + (2 · (𝐴 · 𝐵))))
41 2t2e4 8842 . . . . . . . . . . 11 (2 · 2) = 4
4241oveq1i 5752 . . . . . . . . . 10 ((2 · 2) · (𝐴 · 𝐵)) = (4 · (𝐴 · 𝐵))
43 2cnd 8761 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 2 ∈ ℂ)
445recnd 7762 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 · 𝐵) ∈ ℂ)
4543, 43, 44mulassd 7757 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((2 · 2) · (𝐴 · 𝐵)) = (2 · (2 · (𝐴 · 𝐵))))
4642, 45syl5eqr 2164 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (4 · (𝐴 · 𝐵)) = (2 · (2 · (𝐴 · 𝐵))))
4728recnd 7762 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴↑2) ∈ ℂ)
4847, 39, 39pnncand 8080 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (((𝐴↑2) + (2 · (𝐴 · 𝐵))) − ((𝐴↑2) − (2 · (𝐴 · 𝐵)))) = ((2 · (𝐴 · 𝐵)) + (2 · (𝐴 · 𝐵))))
4940, 46, 483eqtr4rd 2161 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (((𝐴↑2) + (2 · (𝐴 · 𝐵))) − ((𝐴↑2) − (2 · (𝐴 · 𝐵)))) = (4 · (𝐴 · 𝐵)))
5027, 38, 493eqtrd 2154 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (((𝐴 + 𝐵)↑2) − ((𝐴𝐵)↑2)) = (4 · (𝐴 · 𝐵)))
512, 3readdcld 7763 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 + 𝐵) ∈ ℝ)
5251resqcld 10418 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 + 𝐵)↑2) ∈ ℝ)
5352recnd 7762 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 + 𝐵)↑2) ∈ ℂ)
5419resqcld 10418 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴𝐵)↑2) ∈ ℝ)
5554recnd 7762 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴𝐵)↑2) ∈ ℂ)
56 4re 8765 . . . . . . . . . 10 4 ∈ ℝ
57 remulcl 7716 . . . . . . . . . 10 ((4 ∈ ℝ ∧ (𝐴 · 𝐵) ∈ ℝ) → (4 · (𝐴 · 𝐵)) ∈ ℝ)
5856, 5, 57sylancr 410 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (4 · (𝐴 · 𝐵)) ∈ ℝ)
5958recnd 7762 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (4 · (𝐴 · 𝐵)) ∈ ℂ)
60 subsub23 7935 . . . . . . . 8 ((((𝐴 + 𝐵)↑2) ∈ ℂ ∧ ((𝐴𝐵)↑2) ∈ ℂ ∧ (4 · (𝐴 · 𝐵)) ∈ ℂ) → ((((𝐴 + 𝐵)↑2) − ((𝐴𝐵)↑2)) = (4 · (𝐴 · 𝐵)) ↔ (((𝐴 + 𝐵)↑2) − (4 · (𝐴 · 𝐵))) = ((𝐴𝐵)↑2)))
6153, 55, 59, 60syl3anc 1201 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((((𝐴 + 𝐵)↑2) − ((𝐴𝐵)↑2)) = (4 · (𝐴 · 𝐵)) ↔ (((𝐴 + 𝐵)↑2) − (4 · (𝐴 · 𝐵))) = ((𝐴𝐵)↑2)))
6250, 61mpbid 146 . . . . . 6 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (((𝐴 + 𝐵)↑2) − (4 · (𝐴 · 𝐵))) = ((𝐴𝐵)↑2))
6320, 62breqtrrd 3926 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (((𝐴 + 𝐵)↑2) − (4 · (𝐴 · 𝐵))))
6452, 58subge0d 8265 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (0 ≤ (((𝐴 + 𝐵)↑2) − (4 · (𝐴 · 𝐵))) ↔ (4 · (𝐴 · 𝐵)) ≤ ((𝐴 + 𝐵)↑2)))
6563, 64mpbid 146 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (4 · (𝐴 · 𝐵)) ≤ ((𝐴 + 𝐵)↑2))
6618, 65eqbrtrd 3920 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((2 · (√‘(𝐴 · 𝐵)))↑2) ≤ ((𝐴 + 𝐵)↑2))
67 remulcl 7716 . . . . 5 ((2 ∈ ℝ ∧ (√‘(𝐴 · 𝐵)) ∈ ℝ) → (2 · (√‘(𝐴 · 𝐵))) ∈ ℝ)
6829, 8, 67sylancr 410 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (2 · (√‘(𝐴 · 𝐵))) ∈ ℝ)
69 sqrtge0 10773 . . . . . 6 (((𝐴 · 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐵)) → 0 ≤ (√‘(𝐴 · 𝐵)))
705, 6, 69syl2anc 408 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (√‘(𝐴 · 𝐵)))
71 0le2 8778 . . . . . 6 0 ≤ 2
72 mulge0 8349 . . . . . 6 (((2 ∈ ℝ ∧ 0 ≤ 2) ∧ ((√‘(𝐴 · 𝐵)) ∈ ℝ ∧ 0 ≤ (√‘(𝐴 · 𝐵)))) → 0 ≤ (2 · (√‘(𝐴 · 𝐵))))
7329, 71, 72mpanl12 432 . . . . 5 (((√‘(𝐴 · 𝐵)) ∈ ℝ ∧ 0 ≤ (√‘(𝐴 · 𝐵))) → 0 ≤ (2 · (√‘(𝐴 · 𝐵))))
748, 70, 73syl2anc 408 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (2 · (√‘(𝐴 · 𝐵))))
75 addge0 8181 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 + 𝐵))
7675an4s 562 . . . 4 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 + 𝐵))
7768, 51, 74, 76le2sqd 10424 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((2 · (√‘(𝐴 · 𝐵))) ≤ (𝐴 + 𝐵) ↔ ((2 · (√‘(𝐴 · 𝐵)))↑2) ≤ ((𝐴 + 𝐵)↑2)))
7866, 77mpbird 166 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (2 · (√‘(𝐴 · 𝐵))) ≤ (𝐴 + 𝐵))
79 2pos 8779 . . . . 5 0 < 2
8029, 79pm3.2i 270 . . . 4 (2 ∈ ℝ ∧ 0 < 2)
8180a1i 9 . . 3 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (2 ∈ ℝ ∧ 0 < 2))
82 lemuldiv2 8608 . . 3 (((√‘(𝐴 · 𝐵)) ∈ ℝ ∧ (𝐴 + 𝐵) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · (√‘(𝐴 · 𝐵))) ≤ (𝐴 + 𝐵) ↔ (√‘(𝐴 · 𝐵)) ≤ ((𝐴 + 𝐵) / 2)))
838, 51, 81, 82syl3anc 1201 . 2 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((2 · (√‘(𝐴 · 𝐵))) ≤ (𝐴 + 𝐵) ↔ (√‘(𝐴 · 𝐵)) ≤ ((𝐴 + 𝐵) / 2)))
8478, 83mpbid 146 1 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (√‘(𝐴 · 𝐵)) ≤ ((𝐴 + 𝐵) / 2))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1316  wcel 1465   class class class wbr 3899  cfv 5093  (class class class)co 5742  cc 7586  cr 7587  0cc0 7588   + caddc 7591   · cmul 7593   < clt 7768  cle 7769  cmin 7901   / cdiv 8400  2c2 8739  4c4 8741  cexp 10260  csqrt 10736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-mulrcl 7687  ax-addcom 7688  ax-mulcom 7689  ax-addass 7690  ax-mulass 7691  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-1rid 7695  ax-0id 7696  ax-rnegex 7697  ax-precex 7698  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704  ax-pre-mulgt0 7705  ax-pre-mulext 7706  ax-arch 7707  ax-caucvg 7708
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rmo 2401  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-if 3445  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-po 4188  df-iso 4189  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-frec 6256  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-reap 8305  df-ap 8312  df-div 8401  df-inn 8689  df-2 8747  df-3 8748  df-4 8749  df-n0 8946  df-z 9023  df-uz 9295  df-rp 9410  df-seqfrec 10187  df-exp 10261  df-rsqrt 10738
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator