ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anbi2ci GIF version

Theorem anbi2ci 440
Description: Variant of anbi2i 438 with commutation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Hypothesis
Ref Expression
bi.aa (𝜑𝜓)
Assertion
Ref Expression
anbi2ci ((𝜑𝜒) ↔ (𝜒𝜓))

Proof of Theorem anbi2ci
StepHypRef Expression
1 bi.aa . . 3 (𝜑𝜓)
21anbi1i 439 . 2 ((𝜑𝜒) ↔ (𝜓𝜒))
3 ancom 257 . 2 ((𝜓𝜒) ↔ (𝜒𝜓))
42, 3bitri 177 1 ((𝜑𝜒) ↔ (𝜒𝜓))
Colors of variables: wff set class
Syntax hints:  wa 101  wb 102
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105
This theorem depends on definitions:  df-bi 114
This theorem is referenced by:  clabel  2179  ordpwsucss  4318  asymref  4737  supmoti  6398
  Copyright terms: Public domain W3C validator