ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  anc2r GIF version

Theorem anc2r 315
Description: Conjoin antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994.)
Assertion
Ref Expression
anc2r ((𝜑 → (𝜓𝜒)) → (𝜑 → (𝜓 → (𝜒𝜑))))

Proof of Theorem anc2r
StepHypRef Expression
1 pm3.21 255 . . 3 (𝜑 → (𝜒 → (𝜒𝜑)))
21imim2d 52 . 2 (𝜑 → ((𝜓𝜒) → (𝜓 → (𝜒𝜑))))
32a2i 11 1 ((𝜑 → (𝜓𝜒)) → (𝜑 → (𝜓 → (𝜒𝜑))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia3 105
This theorem is referenced by:  ssorduni  4241
  Copyright terms: Public domain W3C validator