ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancl GIF version

Theorem ancl 305
Description: Conjoin antecedent to left of consequent. (Contributed by NM, 15-Aug-1994.)
Assertion
Ref Expression
ancl ((𝜑𝜓) → (𝜑 → (𝜑𝜓)))

Proof of Theorem ancl
StepHypRef Expression
1 pm3.2 130 . 2 (𝜑 → (𝜓 → (𝜑𝜓)))
21a2i 11 1 ((𝜑𝜓) → (𝜑 → (𝜑𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101
This theorem was proved from axioms:  ax-2 6  ax-mp 7  ax-ia3 105
This theorem is referenced by:  equs4  1629  eupickbi  1998
  Copyright terms: Public domain W3C validator