ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancr GIF version

Theorem ancr 308
Description: Conjoin antecedent to right of consequent. (Contributed by NM, 15-Aug-1994.)
Assertion
Ref Expression
ancr ((𝜑𝜓) → (𝜑 → (𝜓𝜑)))

Proof of Theorem ancr
StepHypRef Expression
1 pm3.21 255 . 2 (𝜑 → (𝜓 → (𝜓𝜑)))
21a2i 11 1 ((𝜑𝜓) → (𝜑 → (𝜓𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia3 105
This theorem is referenced by:  bimsc1  881  ssddif  3199  reupick2  3251  intmin4  3671
  Copyright terms: Public domain W3C validator