ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancri GIF version

Theorem ancri 311
Description: Deduction conjoining antecedent to right of consequent. (Contributed by NM, 15-Aug-1994.)
Hypothesis
Ref Expression
ancri.1 (𝜑𝜓)
Assertion
Ref Expression
ancri (𝜑 → (𝜓𝜑))

Proof of Theorem ancri
StepHypRef Expression
1 ancri.1 . 2 (𝜑𝜓)
2 id 19 . 2 (𝜑𝜑)
31, 2jca 294 1 (𝜑 → (𝜓𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia3 105
This theorem is referenced by:  truanOLD  1277  bamalip  2037  gencbvex  2617  mosubt  2741  trsuc  4187  eusv2nf  4216  mosubopt  4433  issref  4735  fo00  5190  eqfnov2  5636
  Copyright terms: Public domain W3C validator