ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apreap GIF version

Theorem apreap 7651
Description: Complex apartness and real apartness agree on the real numbers. (Contributed by Jim Kingdon, 31-Jan-2020.)
Assertion
Ref Expression
apreap ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵𝐴 # 𝐵))

Proof of Theorem apreap
Dummy variables 𝑟 𝑠 𝑡 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2062 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥 = (𝑟 + (i · 𝑠)) ↔ 𝐴 = (𝑟 + (i · 𝑠))))
21anbi1d 446 . . . . . . 7 (𝑥 = 𝐴 → ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ↔ (𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢)))))
32anbi1d 446 . . . . . 6 (𝑥 = 𝐴 → (((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
432rexbidv 2366 . . . . 5 (𝑥 = 𝐴 → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
542rexbidv 2366 . . . 4 (𝑥 = 𝐴 → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
6 eqeq1 2062 . . . . . . . 8 (𝑦 = 𝐵 → (𝑦 = (𝑡 + (i · 𝑢)) ↔ 𝐵 = (𝑡 + (i · 𝑢))))
76anbi2d 445 . . . . . . 7 (𝑦 = 𝐵 → ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ↔ (𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢)))))
87anbi1d 446 . . . . . 6 (𝑦 = 𝐵 → (((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
982rexbidv 2366 . . . . 5 (𝑦 = 𝐵 → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
1092rexbidv 2366 . . . 4 (𝑦 = 𝐵 → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
11 df-ap 7646 . . . 4 # = {⟨𝑥, 𝑦⟩ ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))}
125, 10, 11brabg 4033 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
13 simplll 493 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) → 𝐴 ∈ ℝ)
1413adantr 265 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝐴 ∈ ℝ)
15 simplrl 495 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) → 𝑟 ∈ ℝ)
1615adantr 265 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑟 ∈ ℝ)
17 simplrr 496 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) → 𝑠 ∈ ℝ)
1817adantr 265 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑠 ∈ ℝ)
19 simprll 497 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝐴 = (𝑟 + (i · 𝑠)))
20 rereim 7650 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝑟 ∈ ℝ) ∧ (𝑠 ∈ ℝ ∧ 𝐴 = (𝑟 + (i · 𝑠)))) → (𝑟 = 𝐴𝑠 = 0))
2114, 16, 18, 19, 20syl22anc 1147 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → (𝑟 = 𝐴𝑠 = 0))
2221simprd 111 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑠 = 0)
23 simpllr 494 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) → 𝐵 ∈ ℝ)
2423adantr 265 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝐵 ∈ ℝ)
25 simplrl 495 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑡 ∈ ℝ)
26 simplrr 496 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑢 ∈ ℝ)
27 simprlr 498 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝐵 = (𝑡 + (i · 𝑢)))
28 rereim 7650 . . . . . . . . . . . 12 (((𝐵 ∈ ℝ ∧ 𝑡 ∈ ℝ) ∧ (𝑢 ∈ ℝ ∧ 𝐵 = (𝑡 + (i · 𝑢)))) → (𝑡 = 𝐵𝑢 = 0))
2924, 25, 26, 27, 28syl22anc 1147 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → (𝑡 = 𝐵𝑢 = 0))
3029simprd 111 . . . . . . . . . 10 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑢 = 0)
3122, 30eqtr4d 2091 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑠 = 𝑢)
32 reapti 7643 . . . . . . . . . 10 ((𝑠 ∈ ℝ ∧ 𝑢 ∈ ℝ) → (𝑠 = 𝑢 ↔ ¬ 𝑠 # 𝑢))
3318, 26, 32syl2anc 397 . . . . . . . . 9 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → (𝑠 = 𝑢 ↔ ¬ 𝑠 # 𝑢))
3431, 33mpbid 139 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → ¬ 𝑠 # 𝑢)
35 simprr 492 . . . . . . . 8 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → (𝑟 # 𝑡𝑠 # 𝑢))
3634, 35ecased 1255 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑟 # 𝑡)
3721simpld 109 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑟 = 𝐴)
3829simpld 109 . . . . . . 7 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝑡 = 𝐵)
3936, 37, 383brtr3d 3820 . . . . . 6 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝐴 # 𝐵)
4039ex 112 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) → (((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) → 𝐴 # 𝐵))
4140rexlimdvva 2457 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) → 𝐴 # 𝐵))
4241rexlimdvva 2457 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) → 𝐴 # 𝐵))
4312, 42sylbid 143 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵𝐴 # 𝐵))
44 ax-icn 7036 . . . . . . . 8 i ∈ ℂ
4544mul01i 7459 . . . . . . 7 (i · 0) = 0
4645oveq2i 5550 . . . . . 6 (𝐴 + (i · 0)) = (𝐴 + 0)
47 simp1 915 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → 𝐴 ∈ ℝ)
4847recnd 7112 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → 𝐴 ∈ ℂ)
4948addid1d 7222 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (𝐴 + 0) = 𝐴)
5046, 49syl5req 2101 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → 𝐴 = (𝐴 + (i · 0)))
5145oveq2i 5550 . . . . . 6 (𝐵 + (i · 0)) = (𝐵 + 0)
52 simp2 916 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → 𝐵 ∈ ℝ)
5352recnd 7112 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → 𝐵 ∈ ℂ)
5453addid1d 7222 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (𝐵 + 0) = 𝐵)
5551, 54syl5req 2101 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → 𝐵 = (𝐵 + (i · 0)))
56 olc 642 . . . . . . 7 (𝐴 # 𝐵 → (0 # 0 ∨ 𝐴 # 𝐵))
57563ad2ant3 938 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (0 # 0 ∨ 𝐴 # 𝐵))
5857orcomd 658 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (𝐴 # 𝐵 ∨ 0 # 0))
5950, 55, 58jca31 296 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 0))) ∧ (𝐴 # 𝐵 ∨ 0 # 0)))
60 0red 7085 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → 0 ∈ ℝ)
61 simpr 107 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑢 = 0) → 𝑢 = 0)
6261oveq2d 5555 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑢 = 0) → (i · 𝑢) = (i · 0))
6362oveq2d 5555 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑢 = 0) → (𝐵 + (i · 𝑢)) = (𝐵 + (i · 0)))
6463eqeq2d 2067 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑢 = 0) → (𝐵 = (𝐵 + (i · 𝑢)) ↔ 𝐵 = (𝐵 + (i · 0))))
6564anbi2d 445 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑢 = 0) → ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 𝑢))) ↔ (𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 0)))))
6661breq2d 3803 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑢 = 0) → (0 # 𝑢 ↔ 0 # 0))
6766orbi2d 714 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑢 = 0) → ((𝐴 # 𝐵 ∨ 0 # 𝑢) ↔ (𝐴 # 𝐵 ∨ 0 # 0)))
6865, 67anbi12d 450 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑢 = 0) → (((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 𝑢))) ∧ (𝐴 # 𝐵 ∨ 0 # 𝑢)) ↔ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 0))) ∧ (𝐴 # 𝐵 ∨ 0 # 0))))
6960, 68rspcedv 2677 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 0))) ∧ (𝐴 # 𝐵 ∨ 0 # 0)) → ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 𝑢))) ∧ (𝐴 # 𝐵 ∨ 0 # 𝑢))))
70 simpr 107 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑡 = 𝐵) → 𝑡 = 𝐵)
7170oveq1d 5554 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑡 = 𝐵) → (𝑡 + (i · 𝑢)) = (𝐵 + (i · 𝑢)))
7271eqeq2d 2067 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑡 = 𝐵) → (𝐵 = (𝑡 + (i · 𝑢)) ↔ 𝐵 = (𝐵 + (i · 𝑢))))
7372anbi2d 445 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑡 = 𝐵) → ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ↔ (𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 𝑢)))))
7470breq2d 3803 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑡 = 𝐵) → (𝐴 # 𝑡𝐴 # 𝐵))
7574orbi1d 715 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑡 = 𝐵) → ((𝐴 # 𝑡 ∨ 0 # 𝑢) ↔ (𝐴 # 𝐵 ∨ 0 # 𝑢)))
7673, 75anbi12d 450 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑡 = 𝐵) → (((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡 ∨ 0 # 𝑢)) ↔ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 𝑢))) ∧ (𝐴 # 𝐵 ∨ 0 # 𝑢))))
7776rexbidv 2344 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑡 = 𝐵) → (∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡 ∨ 0 # 𝑢)) ↔ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 𝑢))) ∧ (𝐴 # 𝐵 ∨ 0 # 𝑢))))
7852, 77rspcedv 2677 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 𝑢))) ∧ (𝐴 # 𝐵 ∨ 0 # 𝑢)) → ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡 ∨ 0 # 𝑢))))
7969, 78syld 44 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 0))) ∧ (𝐴 # 𝐵 ∨ 0 # 0)) → ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡 ∨ 0 # 𝑢))))
80 simpr 107 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑠 = 0) → 𝑠 = 0)
8180oveq2d 5555 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑠 = 0) → (i · 𝑠) = (i · 0))
8281oveq2d 5555 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑠 = 0) → (𝐴 + (i · 𝑠)) = (𝐴 + (i · 0)))
8382eqeq2d 2067 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑠 = 0) → (𝐴 = (𝐴 + (i · 𝑠)) ↔ 𝐴 = (𝐴 + (i · 0))))
8483anbi1d 446 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑠 = 0) → ((𝐴 = (𝐴 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ↔ (𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝑡 + (i · 𝑢)))))
8580breq1d 3801 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑠 = 0) → (𝑠 # 𝑢 ↔ 0 # 𝑢))
8685orbi2d 714 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑠 = 0) → ((𝐴 # 𝑡𝑠 # 𝑢) ↔ (𝐴 # 𝑡 ∨ 0 # 𝑢)))
8784, 86anbi12d 450 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑠 = 0) → (((𝐴 = (𝐴 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡𝑠 # 𝑢)) ↔ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡 ∨ 0 # 𝑢))))
88872rexbidv 2366 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑠 = 0) → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡 ∨ 0 # 𝑢))))
8960, 88rspcedv 2677 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡 ∨ 0 # 𝑢)) → ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡𝑠 # 𝑢))))
90 simpr 107 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑟 = 𝐴) → 𝑟 = 𝐴)
9190oveq1d 5554 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑟 = 𝐴) → (𝑟 + (i · 𝑠)) = (𝐴 + (i · 𝑠)))
9291eqeq2d 2067 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑟 = 𝐴) → (𝐴 = (𝑟 + (i · 𝑠)) ↔ 𝐴 = (𝐴 + (i · 𝑠))))
9392anbi1d 446 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑟 = 𝐴) → ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ↔ (𝐴 = (𝐴 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢)))))
9490breq1d 3801 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑟 = 𝐴) → (𝑟 # 𝑡𝐴 # 𝑡))
9594orbi1d 715 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑟 = 𝐴) → ((𝑟 # 𝑡𝑠 # 𝑢) ↔ (𝐴 # 𝑡𝑠 # 𝑢)))
9693, 95anbi12d 450 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑟 = 𝐴) → (((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ((𝐴 = (𝐴 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡𝑠 # 𝑢))))
9796rexbidv 2344 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑟 = 𝐴) → (∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡𝑠 # 𝑢))))
98972rexbidv 2366 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) ∧ 𝑟 = 𝐴) → (∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡𝑠 # 𝑢))))
9947, 98rspcedv 2677 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝐴 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡𝑠 # 𝑢)) → ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
10079, 89, 993syld 55 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 0))) ∧ (𝐴 # 𝐵 ∨ 0 # 0)) → ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
101123adant3 935 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (𝐴 # 𝐵 ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝐴 = (𝑟 + (i · 𝑠)) ∧ 𝐵 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
102100, 101sylibrd 162 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → (((𝐴 = (𝐴 + (i · 0)) ∧ 𝐵 = (𝐵 + (i · 0))) ∧ (𝐴 # 𝐵 ∨ 0 # 0)) → 𝐴 # 𝐵))
10359, 102mpd 13 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 # 𝐵) → 𝐴 # 𝐵)
1041033expia 1117 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵𝐴 # 𝐵))
10543, 104impbid 124 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵𝐴 # 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 101  wb 102  wo 639  w3a 896   = wceq 1259  wcel 1409  wrex 2324   class class class wbr 3791  (class class class)co 5539  cr 6945  0cc0 6946  ici 6948   + caddc 6949   · cmul 6951   # creap 7638   # cap 7645
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-iinf 4338  ax-cnex 7032  ax-resscn 7033  ax-1cn 7034  ax-1re 7035  ax-icn 7036  ax-addcl 7037  ax-addrcl 7038  ax-mulcl 7039  ax-mulrcl 7040  ax-addcom 7041  ax-mulcom 7042  ax-addass 7043  ax-mulass 7044  ax-distr 7045  ax-i2m1 7046  ax-1rid 7048  ax-0id 7049  ax-rnegex 7050  ax-precex 7051  ax-cnre 7052  ax-pre-ltirr 7053  ax-pre-lttrn 7055  ax-pre-apti 7056  ax-pre-ltadd 7057  ax-pre-mulgt0 7058
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-tr 3882  df-eprel 4053  df-id 4057  df-po 4060  df-iso 4061  df-iord 4130  df-on 4132  df-suc 4135  df-iom 4341  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-riota 5495  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795  df-recs 5950  df-irdg 5987  df-1o 6031  df-2o 6032  df-oadd 6035  df-omul 6036  df-er 6136  df-ec 6138  df-qs 6142  df-ni 6459  df-pli 6460  df-mi 6461  df-lti 6462  df-plpq 6499  df-mpq 6500  df-enq 6502  df-nqqs 6503  df-plqqs 6504  df-mqqs 6505  df-1nqqs 6506  df-rq 6507  df-ltnqqs 6508  df-enq0 6579  df-nq0 6580  df-0nq0 6581  df-plq0 6582  df-mq0 6583  df-inp 6621  df-i1p 6622  df-iplp 6623  df-iltp 6625  df-enr 6868  df-nr 6869  df-ltr 6872  df-0r 6873  df-1r 6874  df-0 6953  df-1 6954  df-r 6956  df-lt 6959  df-pnf 7120  df-mnf 7121  df-ltxr 7123  df-sub 7246  df-neg 7247  df-reap 7639  df-ap 7646
This theorem is referenced by:  reaplt  7652  apreim  7667  apirr  7669  apti  7686  recexap  7707  rerecclap  7780
  Copyright terms: Public domain W3C validator