ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apreim GIF version

Theorem apreim 7667
Description: Complex apartness in terms of real and imaginary parts. (Contributed by Jim Kingdon, 12-Feb-2020.)
Assertion
Ref Expression
apreim (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) # (𝐶 + (i · 𝐷)) ↔ (𝐴 # 𝐶𝐵 # 𝐷)))

Proof of Theorem apreim
Dummy variables 𝑟 𝑠 𝑡 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 489 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐴 ∈ ℝ)
21recnd 7112 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐴 ∈ ℂ)
3 ax-icn 7036 . . . . . . 7 i ∈ ℂ
43a1i 9 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → i ∈ ℂ)
5 simplr 490 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐵 ∈ ℝ)
65recnd 7112 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐵 ∈ ℂ)
74, 6mulcld 7104 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (i · 𝐵) ∈ ℂ)
82, 7addcld 7103 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 + (i · 𝐵)) ∈ ℂ)
9 simprl 491 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐶 ∈ ℝ)
109recnd 7112 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐶 ∈ ℂ)
11 simprr 492 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐷 ∈ ℝ)
1211recnd 7112 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐷 ∈ ℂ)
134, 12mulcld 7104 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (i · 𝐷) ∈ ℂ)
1410, 13addcld 7103 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐶 + (i · 𝐷)) ∈ ℂ)
15 eqeq1 2062 . . . . . . . . 9 (𝑥 = (𝐴 + (i · 𝐵)) → (𝑥 = (𝑟 + (i · 𝑠)) ↔ (𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠))))
1615anbi1d 446 . . . . . . . 8 (𝑥 = (𝐴 + (i · 𝐵)) → ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ↔ ((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢)))))
1716anbi1d 446 . . . . . . 7 (𝑥 = (𝐴 + (i · 𝐵)) → (((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
18172rexbidv 2366 . . . . . 6 (𝑥 = (𝐴 + (i · 𝐵)) → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
19182rexbidv 2366 . . . . 5 (𝑥 = (𝐴 + (i · 𝐵)) → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
20 eqeq1 2062 . . . . . . . . 9 (𝑦 = (𝐶 + (i · 𝐷)) → (𝑦 = (𝑡 + (i · 𝑢)) ↔ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))))
2120anbi2d 445 . . . . . . . 8 (𝑦 = (𝐶 + (i · 𝐷)) → (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ↔ ((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢)))))
2221anbi1d 446 . . . . . . 7 (𝑦 = (𝐶 + (i · 𝐷)) → ((((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
23222rexbidv 2366 . . . . . 6 (𝑦 = (𝐶 + (i · 𝐷)) → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
24232rexbidv 2366 . . . . 5 (𝑦 = (𝐶 + (i · 𝐷)) → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
25 df-ap 7646 . . . . 5 # = {⟨𝑥, 𝑦⟩ ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))}
2619, 24, 25brabg 4033 . . . 4 (((𝐴 + (i · 𝐵)) ∈ ℂ ∧ (𝐶 + (i · 𝐷)) ∈ ℂ) → ((𝐴 + (i · 𝐵)) # (𝐶 + (i · 𝐷)) ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
278, 14, 26syl2anc 397 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) # (𝐶 + (i · 𝐷)) ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
28 simprr 492 . . . . . . 7 ((((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → (𝑟 # 𝑡𝑠 # 𝑢))
291ad3antrrr 469 . . . . . . . . . 10 ((((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝐴 ∈ ℝ)
309ad3antrrr 469 . . . . . . . . . 10 ((((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝐶 ∈ ℝ)
31 apreap 7651 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐶𝐴 # 𝐶))
3229, 30, 31syl2anc 397 . . . . . . . . 9 ((((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → (𝐴 # 𝐶𝐴 # 𝐶))
335ad3antrrr 469 . . . . . . . . . 10 ((((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝐵 ∈ ℝ)
3411ad3antrrr 469 . . . . . . . . . 10 ((((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝐷 ∈ ℝ)
35 apreap 7651 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐵 # 𝐷𝐵 # 𝐷))
3633, 34, 35syl2anc 397 . . . . . . . . 9 ((((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → (𝐵 # 𝐷𝐵 # 𝐷))
3732, 36orbi12d 717 . . . . . . . 8 ((((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → ((𝐴 # 𝐶𝐵 # 𝐷) ↔ (𝐴 # 𝐶𝐵 # 𝐷)))
38 simprll 497 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → (𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)))
39 simpllr 494 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ))
40 cru 7666 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ↔ (𝐴 = 𝑟𝐵 = 𝑠)))
4129, 33, 39, 40syl21anc 1145 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → ((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ↔ (𝐴 = 𝑟𝐵 = 𝑠)))
4238, 41mpbid 139 . . . . . . . . . . 11 ((((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → (𝐴 = 𝑟𝐵 = 𝑠))
4342simpld 109 . . . . . . . . . 10 ((((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝐴 = 𝑟)
44 simprlr 498 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢)))
45 simplr 490 . . . . . . . . . . . . 13 ((((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ))
46 cru 7666 . . . . . . . . . . . . 13 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) → ((𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢)) ↔ (𝐶 = 𝑡𝐷 = 𝑢)))
4730, 34, 45, 46syl21anc 1145 . . . . . . . . . . . 12 ((((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → ((𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢)) ↔ (𝐶 = 𝑡𝐷 = 𝑢)))
4844, 47mpbid 139 . . . . . . . . . . 11 ((((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → (𝐶 = 𝑡𝐷 = 𝑢))
4948simpld 109 . . . . . . . . . 10 ((((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝐶 = 𝑡)
5043, 49breq12d 3804 . . . . . . . . 9 ((((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → (𝐴 # 𝐶𝑟 # 𝑡))
5142simprd 111 . . . . . . . . . 10 ((((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝐵 = 𝑠)
5248simprd 111 . . . . . . . . . 10 ((((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → 𝐷 = 𝑢)
5351, 52breq12d 3804 . . . . . . . . 9 ((((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → (𝐵 # 𝐷𝑠 # 𝑢))
5450, 53orbi12d 717 . . . . . . . 8 ((((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → ((𝐴 # 𝐶𝐵 # 𝐷) ↔ (𝑟 # 𝑡𝑠 # 𝑢)))
5537, 54bitrd 181 . . . . . . 7 ((((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → ((𝐴 # 𝐶𝐵 # 𝐷) ↔ (𝑟 # 𝑡𝑠 # 𝑢)))
5628, 55mpbird 160 . . . . . 6 ((((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) ∧ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))) → (𝐴 # 𝐶𝐵 # 𝐷))
5756ex 112 . . . . 5 (((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) ∧ (𝑡 ∈ ℝ ∧ 𝑢 ∈ ℝ)) → ((((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) → (𝐴 # 𝐶𝐵 # 𝐷)))
5857rexlimdvva 2457 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝑟 ∈ ℝ ∧ 𝑠 ∈ ℝ)) → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) → (𝐴 # 𝐶𝐵 # 𝐷)))
5958rexlimdvva 2457 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) → (𝐴 # 𝐶𝐵 # 𝐷)))
6027, 59sylbid 143 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) # (𝐶 + (i · 𝐷)) → (𝐴 # 𝐶𝐵 # 𝐷)))
6131ad2ant2r 486 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 # 𝐶𝐴 # 𝐶))
6235ad2ant2l 485 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐵 # 𝐷𝐵 # 𝐷))
6361, 62orbi12d 717 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 # 𝐶𝐵 # 𝐷) ↔ (𝐴 # 𝐶𝐵 # 𝐷)))
6463pm5.32i 435 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 # 𝐶𝐵 # 𝐷)) ↔ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 # 𝐶𝐵 # 𝐷)))
65 eqid 2056 . . . . . . . . . . . 12 (𝐴 + (i · 𝐵)) = (𝐴 + (i · 𝐵))
66 eqid 2056 . . . . . . . . . . . 12 (𝐶 + (i · 𝐷)) = (𝐶 + (i · 𝐷))
6765, 66pm3.2i 261 . . . . . . . . . . 11 ((𝐴 + (i · 𝐵)) = (𝐴 + (i · 𝐵)) ∧ (𝐶 + (i · 𝐷)) = (𝐶 + (i · 𝐷)))
6867biantrur 291 . . . . . . . . . 10 ((𝐴 # 𝐶𝐵 # 𝐷) ↔ (((𝐴 + (i · 𝐵)) = (𝐴 + (i · 𝐵)) ∧ (𝐶 + (i · 𝐷)) = (𝐶 + (i · 𝐷))) ∧ (𝐴 # 𝐶𝐵 # 𝐷)))
69 oveq1 5546 . . . . . . . . . . . . . 14 (𝑡 = 𝐶 → (𝑡 + (i · 𝑢)) = (𝐶 + (i · 𝑢)))
7069eqeq2d 2067 . . . . . . . . . . . . 13 (𝑡 = 𝐶 → ((𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢)) ↔ (𝐶 + (i · 𝐷)) = (𝐶 + (i · 𝑢))))
7170anbi2d 445 . . . . . . . . . . . 12 (𝑡 = 𝐶 → (((𝐴 + (i · 𝐵)) = (𝐴 + (i · 𝐵)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ↔ ((𝐴 + (i · 𝐵)) = (𝐴 + (i · 𝐵)) ∧ (𝐶 + (i · 𝐷)) = (𝐶 + (i · 𝑢)))))
72 breq2 3795 . . . . . . . . . . . . 13 (𝑡 = 𝐶 → (𝐴 # 𝑡𝐴 # 𝐶))
7372orbi1d 715 . . . . . . . . . . . 12 (𝑡 = 𝐶 → ((𝐴 # 𝑡𝐵 # 𝑢) ↔ (𝐴 # 𝐶𝐵 # 𝑢)))
7471, 73anbi12d 450 . . . . . . . . . . 11 (𝑡 = 𝐶 → ((((𝐴 + (i · 𝐵)) = (𝐴 + (i · 𝐵)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡𝐵 # 𝑢)) ↔ (((𝐴 + (i · 𝐵)) = (𝐴 + (i · 𝐵)) ∧ (𝐶 + (i · 𝐷)) = (𝐶 + (i · 𝑢))) ∧ (𝐴 # 𝐶𝐵 # 𝑢))))
75 oveq2 5547 . . . . . . . . . . . . . . 15 (𝑢 = 𝐷 → (i · 𝑢) = (i · 𝐷))
7675oveq2d 5555 . . . . . . . . . . . . . 14 (𝑢 = 𝐷 → (𝐶 + (i · 𝑢)) = (𝐶 + (i · 𝐷)))
7776eqeq2d 2067 . . . . . . . . . . . . 13 (𝑢 = 𝐷 → ((𝐶 + (i · 𝐷)) = (𝐶 + (i · 𝑢)) ↔ (𝐶 + (i · 𝐷)) = (𝐶 + (i · 𝐷))))
7877anbi2d 445 . . . . . . . . . . . 12 (𝑢 = 𝐷 → (((𝐴 + (i · 𝐵)) = (𝐴 + (i · 𝐵)) ∧ (𝐶 + (i · 𝐷)) = (𝐶 + (i · 𝑢))) ↔ ((𝐴 + (i · 𝐵)) = (𝐴 + (i · 𝐵)) ∧ (𝐶 + (i · 𝐷)) = (𝐶 + (i · 𝐷)))))
79 breq2 3795 . . . . . . . . . . . . 13 (𝑢 = 𝐷 → (𝐵 # 𝑢𝐵 # 𝐷))
8079orbi2d 714 . . . . . . . . . . . 12 (𝑢 = 𝐷 → ((𝐴 # 𝐶𝐵 # 𝑢) ↔ (𝐴 # 𝐶𝐵 # 𝐷)))
8178, 80anbi12d 450 . . . . . . . . . . 11 (𝑢 = 𝐷 → ((((𝐴 + (i · 𝐵)) = (𝐴 + (i · 𝐵)) ∧ (𝐶 + (i · 𝐷)) = (𝐶 + (i · 𝑢))) ∧ (𝐴 # 𝐶𝐵 # 𝑢)) ↔ (((𝐴 + (i · 𝐵)) = (𝐴 + (i · 𝐵)) ∧ (𝐶 + (i · 𝐷)) = (𝐶 + (i · 𝐷))) ∧ (𝐴 # 𝐶𝐵 # 𝐷))))
8274, 81rspc2ev 2686 . . . . . . . . . 10 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ (((𝐴 + (i · 𝐵)) = (𝐴 + (i · 𝐵)) ∧ (𝐶 + (i · 𝐷)) = (𝐶 + (i · 𝐷))) ∧ (𝐴 # 𝐶𝐵 # 𝐷))) → ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((𝐴 + (i · 𝐵)) = (𝐴 + (i · 𝐵)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡𝐵 # 𝑢)))
8368, 82syl3an3b 1184 . . . . . . . . 9 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ (𝐴 # 𝐶𝐵 # 𝐷)) → ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((𝐴 + (i · 𝐵)) = (𝐴 + (i · 𝐵)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡𝐵 # 𝑢)))
84833expa 1115 . . . . . . . 8 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (𝐴 # 𝐶𝐵 # 𝐷)) → ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((𝐴 + (i · 𝐵)) = (𝐴 + (i · 𝐵)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡𝐵 # 𝑢)))
85 oveq1 5546 . . . . . . . . . . . . 13 (𝑟 = 𝐴 → (𝑟 + (i · 𝑠)) = (𝐴 + (i · 𝑠)))
8685eqeq2d 2067 . . . . . . . . . . . 12 (𝑟 = 𝐴 → ((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ↔ (𝐴 + (i · 𝐵)) = (𝐴 + (i · 𝑠))))
8786anbi1d 446 . . . . . . . . . . 11 (𝑟 = 𝐴 → (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ↔ ((𝐴 + (i · 𝐵)) = (𝐴 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢)))))
88 breq1 3794 . . . . . . . . . . . 12 (𝑟 = 𝐴 → (𝑟 # 𝑡𝐴 # 𝑡))
8988orbi1d 715 . . . . . . . . . . 11 (𝑟 = 𝐴 → ((𝑟 # 𝑡𝑠 # 𝑢) ↔ (𝐴 # 𝑡𝑠 # 𝑢)))
9087, 89anbi12d 450 . . . . . . . . . 10 (𝑟 = 𝐴 → ((((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ (((𝐴 + (i · 𝐵)) = (𝐴 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡𝑠 # 𝑢))))
91902rexbidv 2366 . . . . . . . . 9 (𝑟 = 𝐴 → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((𝐴 + (i · 𝐵)) = (𝐴 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡𝑠 # 𝑢))))
92 oveq2 5547 . . . . . . . . . . . . . 14 (𝑠 = 𝐵 → (i · 𝑠) = (i · 𝐵))
9392oveq2d 5555 . . . . . . . . . . . . 13 (𝑠 = 𝐵 → (𝐴 + (i · 𝑠)) = (𝐴 + (i · 𝐵)))
9493eqeq2d 2067 . . . . . . . . . . . 12 (𝑠 = 𝐵 → ((𝐴 + (i · 𝐵)) = (𝐴 + (i · 𝑠)) ↔ (𝐴 + (i · 𝐵)) = (𝐴 + (i · 𝐵))))
9594anbi1d 446 . . . . . . . . . . 11 (𝑠 = 𝐵 → (((𝐴 + (i · 𝐵)) = (𝐴 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ↔ ((𝐴 + (i · 𝐵)) = (𝐴 + (i · 𝐵)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢)))))
96 breq1 3794 . . . . . . . . . . . 12 (𝑠 = 𝐵 → (𝑠 # 𝑢𝐵 # 𝑢))
9796orbi2d 714 . . . . . . . . . . 11 (𝑠 = 𝐵 → ((𝐴 # 𝑡𝑠 # 𝑢) ↔ (𝐴 # 𝑡𝐵 # 𝑢)))
9895, 97anbi12d 450 . . . . . . . . . 10 (𝑠 = 𝐵 → ((((𝐴 + (i · 𝐵)) = (𝐴 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡𝑠 # 𝑢)) ↔ (((𝐴 + (i · 𝐵)) = (𝐴 + (i · 𝐵)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡𝐵 # 𝑢))))
99982rexbidv 2366 . . . . . . . . 9 (𝑠 = 𝐵 → (∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((𝐴 + (i · 𝐵)) = (𝐴 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡𝑠 # 𝑢)) ↔ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((𝐴 + (i · 𝐵)) = (𝐴 + (i · 𝐵)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡𝐵 # 𝑢))))
10091, 99rspc2ev 2686 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((𝐴 + (i · 𝐵)) = (𝐴 + (i · 𝐵)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝐴 # 𝑡𝐵 # 𝑢))) → ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)))
10184, 100syl3an3 1181 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (𝐴 # 𝐶𝐵 # 𝐷))) → ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)))
1021013expa 1115 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (𝐴 # 𝐶𝐵 # 𝐷))) → ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)))
103102anassrs 386 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 # 𝐶𝐵 # 𝐷)) → ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢)))
10427adantr 265 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 # 𝐶𝐵 # 𝐷)) → ((𝐴 + (i · 𝐵)) # (𝐶 + (i · 𝐷)) ↔ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ (((𝐴 + (i · 𝐵)) = (𝑟 + (i · 𝑠)) ∧ (𝐶 + (i · 𝐷)) = (𝑡 + (i · 𝑢))) ∧ (𝑟 # 𝑡𝑠 # 𝑢))))
105103, 104mpbird 160 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 # 𝐶𝐵 # 𝐷)) → (𝐴 + (i · 𝐵)) # (𝐶 + (i · 𝐷)))
10664, 105sylbi 118 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 # 𝐶𝐵 # 𝐷)) → (𝐴 + (i · 𝐵)) # (𝐶 + (i · 𝐷)))
107106ex 112 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 # 𝐶𝐵 # 𝐷) → (𝐴 + (i · 𝐵)) # (𝐶 + (i · 𝐷))))
10860, 107impbid 124 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) # (𝐶 + (i · 𝐷)) ↔ (𝐴 # 𝐶𝐵 # 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102  wo 639   = wceq 1259  wcel 1409  wrex 2324   class class class wbr 3791  (class class class)co 5539  cc 6944  cr 6945  ici 6948   + caddc 6949   · cmul 6951   # creap 7638   # cap 7645
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-iinf 4338  ax-cnex 7032  ax-resscn 7033  ax-1cn 7034  ax-1re 7035  ax-icn 7036  ax-addcl 7037  ax-addrcl 7038  ax-mulcl 7039  ax-mulrcl 7040  ax-addcom 7041  ax-mulcom 7042  ax-addass 7043  ax-mulass 7044  ax-distr 7045  ax-i2m1 7046  ax-1rid 7048  ax-0id 7049  ax-rnegex 7050  ax-precex 7051  ax-cnre 7052  ax-pre-ltirr 7053  ax-pre-lttrn 7055  ax-pre-apti 7056  ax-pre-ltadd 7057  ax-pre-mulgt0 7058
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-tr 3882  df-eprel 4053  df-id 4057  df-po 4060  df-iso 4061  df-iord 4130  df-on 4132  df-suc 4135  df-iom 4341  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-riota 5495  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795  df-recs 5950  df-irdg 5987  df-1o 6031  df-2o 6032  df-oadd 6035  df-omul 6036  df-er 6136  df-ec 6138  df-qs 6142  df-ni 6459  df-pli 6460  df-mi 6461  df-lti 6462  df-plpq 6499  df-mpq 6500  df-enq 6502  df-nqqs 6503  df-plqqs 6504  df-mqqs 6505  df-1nqqs 6506  df-rq 6507  df-ltnqqs 6508  df-enq0 6579  df-nq0 6580  df-0nq0 6581  df-plq0 6582  df-mq0 6583  df-inp 6621  df-i1p 6622  df-iplp 6623  df-iltp 6625  df-enr 6868  df-nr 6869  df-ltr 6872  df-0r 6873  df-1r 6874  df-0 6953  df-1 6954  df-r 6956  df-lt 6959  df-pnf 7120  df-mnf 7121  df-ltxr 7123  df-sub 7246  df-neg 7247  df-reap 7639  df-ap 7646
This theorem is referenced by:  apirr  7669  apsym  7670  apcotr  7671  apadd1  7672  apneg  7675  mulext1  7676  apti  7686  recexaplem2  7706  crap0  7985  iap0  8204  cjap  9733  absext  9889
  Copyright terms: Public domain W3C validator