ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  aptiprlemu GIF version

Theorem aptiprlemu 6795
Description: Lemma for aptipr 6796. (Contributed by Jim Kingdon, 28-Jan-2020.)
Assertion
Ref Expression
aptiprlemu ((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) → (2nd𝐵) ⊆ (2nd𝐴))

Proof of Theorem aptiprlemu
Dummy variables 𝑓 𝑔 𝑠 𝑡 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prop 6630 . . . . . 6 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
2 prnminu 6644 . . . . . 6 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑥 ∈ (2nd𝐵)) → ∃𝑠 ∈ (2nd𝐵)𝑠 <Q 𝑥)
31, 2sylan 271 . . . . 5 ((𝐵P𝑥 ∈ (2nd𝐵)) → ∃𝑠 ∈ (2nd𝐵)𝑠 <Q 𝑥)
433ad2antl2 1078 . . . 4 (((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) → ∃𝑠 ∈ (2nd𝐵)𝑠 <Q 𝑥)
5 simprr 492 . . . . . 6 ((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) → 𝑠 <Q 𝑥)
6 ltexnqi 6564 . . . . . 6 (𝑠 <Q 𝑥 → ∃𝑡Q (𝑠 +Q 𝑡) = 𝑥)
75, 6syl 14 . . . . 5 ((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) → ∃𝑡Q (𝑠 +Q 𝑡) = 𝑥)
8 simpl1 918 . . . . . . . 8 (((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) → 𝐴P)
98ad2antrr 465 . . . . . . 7 (((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) → 𝐴P)
10 simprl 491 . . . . . . 7 (((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) → 𝑡Q)
11 prop 6630 . . . . . . . 8 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
12 prarloc2 6659 . . . . . . . 8 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑡Q) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
1311, 12sylan 271 . . . . . . 7 ((𝐴P𝑡Q) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
149, 10, 13syl2anc 397 . . . . . 6 (((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) → ∃𝑢 ∈ (1st𝐴)(𝑢 +Q 𝑡) ∈ (2nd𝐴))
15 simpl2 919 . . . . . . . . . 10 (((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) → 𝐵P)
1615ad3antrrr 469 . . . . . . . . 9 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝐵P)
17 simpr 107 . . . . . . . . . 10 (((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) → 𝑥 ∈ (2nd𝐵))
1817ad3antrrr 469 . . . . . . . . 9 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑥 ∈ (2nd𝐵))
19 elprnqu 6637 . . . . . . . . . 10 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑥 ∈ (2nd𝐵)) → 𝑥Q)
201, 19sylan 271 . . . . . . . . 9 ((𝐵P𝑥 ∈ (2nd𝐵)) → 𝑥Q)
2116, 18, 20syl2anc 397 . . . . . . . 8 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑥Q)
228ad3antrrr 469 . . . . . . . . . 10 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝐴P)
23 simprl 491 . . . . . . . . . 10 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑢 ∈ (1st𝐴))
24 elprnql 6636 . . . . . . . . . . 11 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑢 ∈ (1st𝐴)) → 𝑢Q)
2511, 24sylan 271 . . . . . . . . . 10 ((𝐴P𝑢 ∈ (1st𝐴)) → 𝑢Q)
2622, 23, 25syl2anc 397 . . . . . . . . 9 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑢Q)
2710adantr 265 . . . . . . . . 9 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑡Q)
28 addclnq 6530 . . . . . . . . 9 ((𝑢Q𝑡Q) → (𝑢 +Q 𝑡) ∈ Q)
2926, 27, 28syl2anc 397 . . . . . . . 8 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑢 +Q 𝑡) ∈ Q)
30 nqtri3or 6551 . . . . . . . 8 ((𝑥Q ∧ (𝑢 +Q 𝑡) ∈ Q) → (𝑥 <Q (𝑢 +Q 𝑡) ∨ 𝑥 = (𝑢 +Q 𝑡) ∨ (𝑢 +Q 𝑡) <Q 𝑥))
3121, 29, 30syl2anc 397 . . . . . . 7 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑥 <Q (𝑢 +Q 𝑡) ∨ 𝑥 = (𝑢 +Q 𝑡) ∨ (𝑢 +Q 𝑡) <Q 𝑥))
3215adantr 265 . . . . . . . . . . . . . 14 ((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) → 𝐵P)
33 simprl 491 . . . . . . . . . . . . . 14 ((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) → 𝑠 ∈ (2nd𝐵))
34 elprnqu 6637 . . . . . . . . . . . . . . 15 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑠 ∈ (2nd𝐵)) → 𝑠Q)
351, 34sylan 271 . . . . . . . . . . . . . 14 ((𝐵P𝑠 ∈ (2nd𝐵)) → 𝑠Q)
3632, 33, 35syl2anc 397 . . . . . . . . . . . . 13 ((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) → 𝑠Q)
3736ad3antrrr 469 . . . . . . . . . . . 12 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → 𝑠Q)
3833ad3antrrr 469 . . . . . . . . . . . 12 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → 𝑠 ∈ (2nd𝐵))
39 simplrr 496 . . . . . . . . . . . . . . . 16 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑠 +Q 𝑡) = 𝑥)
40 breq1 3794 . . . . . . . . . . . . . . . . 17 ((𝑠 +Q 𝑡) = 𝑥 → ((𝑠 +Q 𝑡) <Q (𝑢 +Q 𝑡) ↔ 𝑥 <Q (𝑢 +Q 𝑡)))
4140biimprd 151 . . . . . . . . . . . . . . . 16 ((𝑠 +Q 𝑡) = 𝑥 → (𝑥 <Q (𝑢 +Q 𝑡) → (𝑠 +Q 𝑡) <Q (𝑢 +Q 𝑡)))
4239, 41syl 14 . . . . . . . . . . . . . . 15 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑥 <Q (𝑢 +Q 𝑡) → (𝑠 +Q 𝑡) <Q (𝑢 +Q 𝑡)))
4342imp 119 . . . . . . . . . . . . . 14 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → (𝑠 +Q 𝑡) <Q (𝑢 +Q 𝑡))
44 ltanqg 6555 . . . . . . . . . . . . . . . 16 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
4544adantl 266 . . . . . . . . . . . . . . 15 ((((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( +Q 𝑓) <Q ( +Q 𝑔)))
4626adantr 265 . . . . . . . . . . . . . . 15 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → 𝑢Q)
4727adantr 265 . . . . . . . . . . . . . . 15 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → 𝑡Q)
48 addcomnqg 6536 . . . . . . . . . . . . . . . 16 ((𝑓Q𝑔Q) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
4948adantl 266 . . . . . . . . . . . . . . 15 ((((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) ∧ (𝑓Q𝑔Q)) → (𝑓 +Q 𝑔) = (𝑔 +Q 𝑓))
5045, 37, 46, 47, 49caovord2d 5697 . . . . . . . . . . . . . 14 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → (𝑠 <Q 𝑢 ↔ (𝑠 +Q 𝑡) <Q (𝑢 +Q 𝑡)))
5143, 50mpbird 160 . . . . . . . . . . . . 13 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → 𝑠 <Q 𝑢)
5222adantr 265 . . . . . . . . . . . . . 14 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → 𝐴P)
5323adantr 265 . . . . . . . . . . . . . 14 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → 𝑢 ∈ (1st𝐴))
54 prcdnql 6639 . . . . . . . . . . . . . . 15 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑢 ∈ (1st𝐴)) → (𝑠 <Q 𝑢𝑠 ∈ (1st𝐴)))
5511, 54sylan 271 . . . . . . . . . . . . . 14 ((𝐴P𝑢 ∈ (1st𝐴)) → (𝑠 <Q 𝑢𝑠 ∈ (1st𝐴)))
5652, 53, 55syl2anc 397 . . . . . . . . . . . . 13 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → (𝑠 <Q 𝑢𝑠 ∈ (1st𝐴)))
5751, 56mpd 13 . . . . . . . . . . . 12 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → 𝑠 ∈ (1st𝐴))
58 rspe 2387 . . . . . . . . . . . 12 ((𝑠Q ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝐴))) → ∃𝑠Q (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝐴)))
5937, 38, 57, 58syl12anc 1144 . . . . . . . . . . 11 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → ∃𝑠Q (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝐴)))
6016adantr 265 . . . . . . . . . . . 12 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → 𝐵P)
61 ltdfpr 6661 . . . . . . . . . . . 12 ((𝐵P𝐴P) → (𝐵<P 𝐴 ↔ ∃𝑠Q (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝐴))))
6260, 52, 61syl2anc 397 . . . . . . . . . . 11 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → (𝐵<P 𝐴 ↔ ∃𝑠Q (𝑠 ∈ (2nd𝐵) ∧ 𝑠 ∈ (1st𝐴))))
6359, 62mpbird 160 . . . . . . . . . 10 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → 𝐵<P 𝐴)
64 simpll3 956 . . . . . . . . . . 11 ((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) → ¬ 𝐵<P 𝐴)
6564ad3antrrr 469 . . . . . . . . . 10 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → ¬ 𝐵<P 𝐴)
6663, 65pm2.21dd 560 . . . . . . . . 9 (((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) ∧ 𝑥 <Q (𝑢 +Q 𝑡)) → 𝑥 ∈ (2nd𝐴))
6766ex 112 . . . . . . . 8 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑥 <Q (𝑢 +Q 𝑡) → 𝑥 ∈ (2nd𝐴)))
68 simprr 492 . . . . . . . . 9 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑢 +Q 𝑡) ∈ (2nd𝐴))
69 eleq1 2116 . . . . . . . . 9 (𝑥 = (𝑢 +Q 𝑡) → (𝑥 ∈ (2nd𝐴) ↔ (𝑢 +Q 𝑡) ∈ (2nd𝐴)))
7068, 69syl5ibrcom 150 . . . . . . . 8 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → (𝑥 = (𝑢 +Q 𝑡) → 𝑥 ∈ (2nd𝐴)))
71 prcunqu 6640 . . . . . . . . . 10 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴)) → ((𝑢 +Q 𝑡) <Q 𝑥𝑥 ∈ (2nd𝐴)))
7211, 71sylan 271 . . . . . . . . 9 ((𝐴P ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴)) → ((𝑢 +Q 𝑡) <Q 𝑥𝑥 ∈ (2nd𝐴)))
7322, 68, 72syl2anc 397 . . . . . . . 8 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ((𝑢 +Q 𝑡) <Q 𝑥𝑥 ∈ (2nd𝐴)))
7467, 70, 733jaod 1210 . . . . . . 7 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → ((𝑥 <Q (𝑢 +Q 𝑡) ∨ 𝑥 = (𝑢 +Q 𝑡) ∨ (𝑢 +Q 𝑡) <Q 𝑥) → 𝑥 ∈ (2nd𝐴)))
7531, 74mpd 13 . . . . . 6 ((((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) ∧ (𝑢 ∈ (1st𝐴) ∧ (𝑢 +Q 𝑡) ∈ (2nd𝐴))) → 𝑥 ∈ (2nd𝐴))
7614, 75rexlimddv 2454 . . . . 5 (((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) ∧ (𝑡Q ∧ (𝑠 +Q 𝑡) = 𝑥)) → 𝑥 ∈ (2nd𝐴))
777, 76rexlimddv 2454 . . . 4 ((((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) ∧ (𝑠 ∈ (2nd𝐵) ∧ 𝑠 <Q 𝑥)) → 𝑥 ∈ (2nd𝐴))
784, 77rexlimddv 2454 . . 3 (((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) ∧ 𝑥 ∈ (2nd𝐵)) → 𝑥 ∈ (2nd𝐴))
7978ex 112 . 2 ((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) → (𝑥 ∈ (2nd𝐵) → 𝑥 ∈ (2nd𝐴)))
8079ssrdv 2978 1 ((𝐴P𝐵P ∧ ¬ 𝐵<P 𝐴) → (2nd𝐵) ⊆ (2nd𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 101  wb 102  w3o 895  w3a 896   = wceq 1259  wcel 1409  wrex 2324  wss 2944  cop 3405   class class class wbr 3791  cfv 4929  (class class class)co 5539  1st c1st 5792  2nd c2nd 5793  Qcnq 6435   +Q cplq 6437   <Q cltq 6440  Pcnp 6446  <P cltp 6450
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-iinf 4338
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-tr 3882  df-eprel 4053  df-id 4057  df-po 4060  df-iso 4061  df-iord 4130  df-on 4132  df-suc 4135  df-iom 4341  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795  df-recs 5950  df-irdg 5987  df-1o 6031  df-2o 6032  df-oadd 6035  df-omul 6036  df-er 6136  df-ec 6138  df-qs 6142  df-ni 6459  df-pli 6460  df-mi 6461  df-lti 6462  df-plpq 6499  df-mpq 6500  df-enq 6502  df-nqqs 6503  df-plqqs 6504  df-mqqs 6505  df-1nqqs 6506  df-rq 6507  df-ltnqqs 6508  df-enq0 6579  df-nq0 6580  df-0nq0 6581  df-plq0 6582  df-mq0 6583  df-inp 6621  df-iltp 6625
This theorem is referenced by:  aptipr  6796
  Copyright terms: Public domain W3C validator