ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  archnqq GIF version

Theorem archnqq 7193
Description: For any fraction, there is an integer that is greater than it. This is also known as the "archimedean property". (Contributed by Jim Kingdon, 1-Dec-2019.)
Assertion
Ref Expression
archnqq (𝐴Q → ∃𝑥N 𝐴 <Q [⟨𝑥, 1o⟩] ~Q )
Distinct variable group:   𝑥,𝐴

Proof of Theorem archnqq
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nqpi 7154 . 2 (𝐴Q → ∃𝑧𝑤((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ))
2 1pi 7091 . . . . . . 7 1oN
3 addclpi 7103 . . . . . . 7 ((𝑧N ∧ 1oN) → (𝑧 +N 1o) ∈ N)
42, 3mpan2 421 . . . . . 6 (𝑧N → (𝑧 +N 1o) ∈ N)
54adantr 274 . . . . 5 ((𝑧N𝑤N) → (𝑧 +N 1o) ∈ N)
65adantr 274 . . . 4 (((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) → (𝑧 +N 1o) ∈ N)
7 pinn 7085 . . . . . . . . . . . . . 14 (𝑧N𝑧 ∈ ω)
8 1onn 6384 . . . . . . . . . . . . . 14 1o ∈ ω
9 nnacl 6344 . . . . . . . . . . . . . 14 ((𝑧 ∈ ω ∧ 1o ∈ ω) → (𝑧 +o 1o) ∈ ω)
107, 8, 9sylancl 409 . . . . . . . . . . . . 13 (𝑧N → (𝑧 +o 1o) ∈ ω)
1110adantr 274 . . . . . . . . . . . 12 ((𝑧N𝑤N) → (𝑧 +o 1o) ∈ ω)
12 nnm1 6388 . . . . . . . . . . . 12 ((𝑧 +o 1o) ∈ ω → ((𝑧 +o 1o) ·o 1o) = (𝑧 +o 1o))
1311, 12syl 14 . . . . . . . . . . 11 ((𝑧N𝑤N) → ((𝑧 +o 1o) ·o 1o) = (𝑧 +o 1o))
14 elni2 7090 . . . . . . . . . . . . . 14 (𝑤N ↔ (𝑤 ∈ ω ∧ ∅ ∈ 𝑤))
15 nnord 4495 . . . . . . . . . . . . . . 15 (𝑤 ∈ ω → Ord 𝑤)
16 ordgt0ge1 6300 . . . . . . . . . . . . . . . 16 (Ord 𝑤 → (∅ ∈ 𝑤 ↔ 1o𝑤))
1716biimpa 294 . . . . . . . . . . . . . . 15 ((Ord 𝑤 ∧ ∅ ∈ 𝑤) → 1o𝑤)
1815, 17sylan 281 . . . . . . . . . . . . . 14 ((𝑤 ∈ ω ∧ ∅ ∈ 𝑤) → 1o𝑤)
1914, 18sylbi 120 . . . . . . . . . . . . 13 (𝑤N → 1o𝑤)
2019adantl 275 . . . . . . . . . . . 12 ((𝑧N𝑤N) → 1o𝑤)
21 pinn 7085 . . . . . . . . . . . . . 14 (𝑤N𝑤 ∈ ω)
2221adantl 275 . . . . . . . . . . . . 13 ((𝑧N𝑤N) → 𝑤 ∈ ω)
23 nnaword1 6377 . . . . . . . . . . . . . . . 16 ((𝑧 ∈ ω ∧ 1o ∈ ω) → 𝑧 ⊆ (𝑧 +o 1o))
247, 8, 23sylancl 409 . . . . . . . . . . . . . . 15 (𝑧N𝑧 ⊆ (𝑧 +o 1o))
25 elni2 7090 . . . . . . . . . . . . . . . 16 (𝑧N ↔ (𝑧 ∈ ω ∧ ∅ ∈ 𝑧))
2625simprbi 273 . . . . . . . . . . . . . . 15 (𝑧N → ∅ ∈ 𝑧)
2724, 26sseldd 3068 . . . . . . . . . . . . . 14 (𝑧N → ∅ ∈ (𝑧 +o 1o))
2827adantr 274 . . . . . . . . . . . . 13 ((𝑧N𝑤N) → ∅ ∈ (𝑧 +o 1o))
29 nnmword 6382 . . . . . . . . . . . . . 14 (((1o ∈ ω ∧ 𝑤 ∈ ω ∧ (𝑧 +o 1o) ∈ ω) ∧ ∅ ∈ (𝑧 +o 1o)) → (1o𝑤 ↔ ((𝑧 +o 1o) ·o 1o) ⊆ ((𝑧 +o 1o) ·o 𝑤)))
308, 29mp3anl1 1294 . . . . . . . . . . . . 13 (((𝑤 ∈ ω ∧ (𝑧 +o 1o) ∈ ω) ∧ ∅ ∈ (𝑧 +o 1o)) → (1o𝑤 ↔ ((𝑧 +o 1o) ·o 1o) ⊆ ((𝑧 +o 1o) ·o 𝑤)))
3122, 11, 28, 30syl21anc 1200 . . . . . . . . . . . 12 ((𝑧N𝑤N) → (1o𝑤 ↔ ((𝑧 +o 1o) ·o 1o) ⊆ ((𝑧 +o 1o) ·o 𝑤)))
3220, 31mpbid 146 . . . . . . . . . . 11 ((𝑧N𝑤N) → ((𝑧 +o 1o) ·o 1o) ⊆ ((𝑧 +o 1o) ·o 𝑤))
3313, 32eqsstrrd 3104 . . . . . . . . . 10 ((𝑧N𝑤N) → (𝑧 +o 1o) ⊆ ((𝑧 +o 1o) ·o 𝑤))
34 nna0 6338 . . . . . . . . . . . . 13 (𝑧 ∈ ω → (𝑧 +o ∅) = 𝑧)
35 0lt1o 6305 . . . . . . . . . . . . . 14 ∅ ∈ 1o
36 nnaordi 6372 . . . . . . . . . . . . . . 15 ((1o ∈ ω ∧ 𝑧 ∈ ω) → (∅ ∈ 1o → (𝑧 +o ∅) ∈ (𝑧 +o 1o)))
378, 36mpan 420 . . . . . . . . . . . . . 14 (𝑧 ∈ ω → (∅ ∈ 1o → (𝑧 +o ∅) ∈ (𝑧 +o 1o)))
3835, 37mpi 15 . . . . . . . . . . . . 13 (𝑧 ∈ ω → (𝑧 +o ∅) ∈ (𝑧 +o 1o))
3934, 38eqeltrrd 2195 . . . . . . . . . . . 12 (𝑧 ∈ ω → 𝑧 ∈ (𝑧 +o 1o))
407, 39syl 14 . . . . . . . . . . 11 (𝑧N𝑧 ∈ (𝑧 +o 1o))
4140adantr 274 . . . . . . . . . 10 ((𝑧N𝑤N) → 𝑧 ∈ (𝑧 +o 1o))
4233, 41sseldd 3068 . . . . . . . . 9 ((𝑧N𝑤N) → 𝑧 ∈ ((𝑧 +o 1o) ·o 𝑤))
43 mulclpi 7104 . . . . . . . . . . . 12 (((𝑧 +N 1o) ∈ N𝑤N) → ((𝑧 +N 1o) ·N 𝑤) ∈ N)
444, 43sylan 281 . . . . . . . . . . 11 ((𝑧N𝑤N) → ((𝑧 +N 1o) ·N 𝑤) ∈ N)
45 ltpiord 7095 . . . . . . . . . . 11 ((𝑧N ∧ ((𝑧 +N 1o) ·N 𝑤) ∈ N) → (𝑧 <N ((𝑧 +N 1o) ·N 𝑤) ↔ 𝑧 ∈ ((𝑧 +N 1o) ·N 𝑤)))
4644, 45syldan 280 . . . . . . . . . 10 ((𝑧N𝑤N) → (𝑧 <N ((𝑧 +N 1o) ·N 𝑤) ↔ 𝑧 ∈ ((𝑧 +N 1o) ·N 𝑤)))
47 mulpiord 7093 . . . . . . . . . . . . 13 (((𝑧 +N 1o) ∈ N𝑤N) → ((𝑧 +N 1o) ·N 𝑤) = ((𝑧 +N 1o) ·o 𝑤))
484, 47sylan 281 . . . . . . . . . . . 12 ((𝑧N𝑤N) → ((𝑧 +N 1o) ·N 𝑤) = ((𝑧 +N 1o) ·o 𝑤))
49 addpiord 7092 . . . . . . . . . . . . . . 15 ((𝑧N ∧ 1oN) → (𝑧 +N 1o) = (𝑧 +o 1o))
502, 49mpan2 421 . . . . . . . . . . . . . 14 (𝑧N → (𝑧 +N 1o) = (𝑧 +o 1o))
5150adantr 274 . . . . . . . . . . . . 13 ((𝑧N𝑤N) → (𝑧 +N 1o) = (𝑧 +o 1o))
5251oveq1d 5757 . . . . . . . . . . . 12 ((𝑧N𝑤N) → ((𝑧 +N 1o) ·o 𝑤) = ((𝑧 +o 1o) ·o 𝑤))
5348, 52eqtrd 2150 . . . . . . . . . . 11 ((𝑧N𝑤N) → ((𝑧 +N 1o) ·N 𝑤) = ((𝑧 +o 1o) ·o 𝑤))
5453eleq2d 2187 . . . . . . . . . 10 ((𝑧N𝑤N) → (𝑧 ∈ ((𝑧 +N 1o) ·N 𝑤) ↔ 𝑧 ∈ ((𝑧 +o 1o) ·o 𝑤)))
5546, 54bitrd 187 . . . . . . . . 9 ((𝑧N𝑤N) → (𝑧 <N ((𝑧 +N 1o) ·N 𝑤) ↔ 𝑧 ∈ ((𝑧 +o 1o) ·o 𝑤)))
5642, 55mpbird 166 . . . . . . . 8 ((𝑧N𝑤N) → 𝑧 <N ((𝑧 +N 1o) ·N 𝑤))
57 mulcompig 7107 . . . . . . . . . 10 (((𝑧 +N 1o) ∈ N𝑤N) → ((𝑧 +N 1o) ·N 𝑤) = (𝑤 ·N (𝑧 +N 1o)))
584, 57sylan 281 . . . . . . . . 9 ((𝑧N𝑤N) → ((𝑧 +N 1o) ·N 𝑤) = (𝑤 ·N (𝑧 +N 1o)))
5958breq2d 3911 . . . . . . . 8 ((𝑧N𝑤N) → (𝑧 <N ((𝑧 +N 1o) ·N 𝑤) ↔ 𝑧 <N (𝑤 ·N (𝑧 +N 1o))))
6056, 59mpbid 146 . . . . . . 7 ((𝑧N𝑤N) → 𝑧 <N (𝑤 ·N (𝑧 +N 1o)))
615, 2jctir 311 . . . . . . . . 9 ((𝑧N𝑤N) → ((𝑧 +N 1o) ∈ N ∧ 1oN))
62 ordpipqqs 7150 . . . . . . . . 9 (((𝑧N𝑤N) ∧ ((𝑧 +N 1o) ∈ N ∧ 1oN)) → ([⟨𝑧, 𝑤⟩] ~Q <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q ↔ (𝑧 ·N 1o) <N (𝑤 ·N (𝑧 +N 1o))))
6361, 62mpdan 417 . . . . . . . 8 ((𝑧N𝑤N) → ([⟨𝑧, 𝑤⟩] ~Q <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q ↔ (𝑧 ·N 1o) <N (𝑤 ·N (𝑧 +N 1o))))
64 mulidpi 7094 . . . . . . . . . 10 (𝑧N → (𝑧 ·N 1o) = 𝑧)
6564adantr 274 . . . . . . . . 9 ((𝑧N𝑤N) → (𝑧 ·N 1o) = 𝑧)
6665breq1d 3909 . . . . . . . 8 ((𝑧N𝑤N) → ((𝑧 ·N 1o) <N (𝑤 ·N (𝑧 +N 1o)) ↔ 𝑧 <N (𝑤 ·N (𝑧 +N 1o))))
6763, 66bitrd 187 . . . . . . 7 ((𝑧N𝑤N) → ([⟨𝑧, 𝑤⟩] ~Q <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q𝑧 <N (𝑤 ·N (𝑧 +N 1o))))
6860, 67mpbird 166 . . . . . 6 ((𝑧N𝑤N) → [⟨𝑧, 𝑤⟩] ~Q <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q )
6968adantr 274 . . . . 5 (((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) → [⟨𝑧, 𝑤⟩] ~Q <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q )
70 breq1 3902 . . . . . 6 (𝐴 = [⟨𝑧, 𝑤⟩] ~Q → (𝐴 <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q ↔ [⟨𝑧, 𝑤⟩] ~Q <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q ))
7170adantl 275 . . . . 5 (((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) → (𝐴 <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q ↔ [⟨𝑧, 𝑤⟩] ~Q <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q ))
7269, 71mpbird 166 . . . 4 (((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) → 𝐴 <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q )
73 opeq1 3675 . . . . . . 7 (𝑥 = (𝑧 +N 1o) → ⟨𝑥, 1o⟩ = ⟨(𝑧 +N 1o), 1o⟩)
7473eceq1d 6433 . . . . . 6 (𝑥 = (𝑧 +N 1o) → [⟨𝑥, 1o⟩] ~Q = [⟨(𝑧 +N 1o), 1o⟩] ~Q )
7574breq2d 3911 . . . . 5 (𝑥 = (𝑧 +N 1o) → (𝐴 <Q [⟨𝑥, 1o⟩] ~Q𝐴 <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q ))
7675rspcev 2763 . . . 4 (((𝑧 +N 1o) ∈ N𝐴 <Q [⟨(𝑧 +N 1o), 1o⟩] ~Q ) → ∃𝑥N 𝐴 <Q [⟨𝑥, 1o⟩] ~Q )
776, 72, 76syl2anc 408 . . 3 (((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) → ∃𝑥N 𝐴 <Q [⟨𝑥, 1o⟩] ~Q )
7877exlimivv 1852 . 2 (∃𝑧𝑤((𝑧N𝑤N) ∧ 𝐴 = [⟨𝑧, 𝑤⟩] ~Q ) → ∃𝑥N 𝐴 <Q [⟨𝑥, 1o⟩] ~Q )
791, 78syl 14 1 (𝐴Q → ∃𝑥N 𝐴 <Q [⟨𝑥, 1o⟩] ~Q )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1316  wex 1453  wcel 1465  wrex 2394  wss 3041  c0 3333  cop 3500   class class class wbr 3899  Ord word 4254  ωcom 4474  (class class class)co 5742  1oc1o 6274   +o coa 6278   ·o comu 6279  [cec 6395  Ncnpi 7048   +N cpli 7049   ·N cmi 7050   <N clti 7051   ~Q ceq 7055  Qcnq 7056   <Q cltq 7061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-dc 805  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-eprel 4181  df-id 4185  df-iord 4258  df-on 4260  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-irdg 6235  df-1o 6281  df-oadd 6285  df-omul 6286  df-er 6397  df-ec 6399  df-qs 6403  df-ni 7080  df-pli 7081  df-mi 7082  df-lti 7083  df-enq 7123  df-nqqs 7124  df-ltnqqs 7129
This theorem is referenced by:  prarloclemarch  7194  nqprm  7318  archpr  7419  archrecnq  7439
  Copyright terms: Public domain W3C validator